Properties

Label 2-42e2-28.27-c1-0-43
Degree $2$
Conductor $1764$
Sign $0.136 + 0.990i$
Analytic cond. $14.0856$
Root an. cond. $3.75308$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.207 − 1.39i)2-s + (−1.91 + 0.579i)4-s − 2.61i·5-s + (1.20 + 2.55i)8-s + (−3.65 + 0.541i)10-s + 3.95i·11-s + 1.08i·13-s + (3.32 − 2.21i)16-s − 0.317i·17-s + 5.16·19-s + (1.51 + 5.00i)20-s + (5.53 − 0.819i)22-s + 2.31i·23-s − 1.82·25-s + (1.51 − 0.224i)26-s + ⋯
L(s)  = 1  + (−0.146 − 0.989i)2-s + (−0.957 + 0.289i)4-s − 1.16i·5-s + (0.426 + 0.904i)8-s + (−1.15 + 0.171i)10-s + 1.19i·11-s + 0.300i·13-s + (0.832 − 0.554i)16-s − 0.0768i·17-s + 1.18·19-s + (0.338 + 1.11i)20-s + (1.18 − 0.174i)22-s + 0.483i·23-s − 0.365·25-s + (0.296 − 0.0439i)26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.136 + 0.990i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.136 + 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1764\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2}\)
Sign: $0.136 + 0.990i$
Analytic conductor: \(14.0856\)
Root analytic conductor: \(3.75308\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1764} (1567, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1764,\ (\ :1/2),\ 0.136 + 0.990i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.463660963\)
\(L(\frac12)\) \(\approx\) \(1.463660963\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.207 + 1.39i)T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 2.61iT - 5T^{2} \)
11 \( 1 - 3.95iT - 11T^{2} \)
13 \( 1 - 1.08iT - 13T^{2} \)
17 \( 1 + 0.317iT - 17T^{2} \)
19 \( 1 - 5.16T + 19T^{2} \)
23 \( 1 - 2.31iT - 23T^{2} \)
29 \( 1 - 6.82T + 29T^{2} \)
31 \( 1 - 6.05T + 31T^{2} \)
37 \( 1 + 4T + 37T^{2} \)
41 \( 1 - 2.29iT - 41T^{2} \)
43 \( 1 + 7.23iT - 43T^{2} \)
47 \( 1 - 4.28T + 47T^{2} \)
53 \( 1 + 10.4T + 53T^{2} \)
59 \( 1 - 11.2T + 59T^{2} \)
61 \( 1 - 5.41iT - 61T^{2} \)
67 \( 1 - 3.27iT - 67T^{2} \)
71 \( 1 - 71T^{2} \)
73 \( 1 + 14.0iT - 73T^{2} \)
79 \( 1 - 7.91iT - 79T^{2} \)
83 \( 1 - 9.45T + 83T^{2} \)
89 \( 1 + 5.99iT - 89T^{2} \)
97 \( 1 - 9.23iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.283171920457365678085571472564, −8.547968895015527867687038004489, −7.81285109768696779422279463136, −6.87793438835241409540240290939, −5.46235934139367838340047991359, −4.81924773519571367647847239303, −4.18616032141691766622889507368, −3.01304089291078148212495002278, −1.84101042599861127917761655037, −0.892584406168074569971257805463, 0.877742154666773418036744179240, 2.83113023157235481318387535669, 3.53646425887043738388242517555, 4.75071825951534237942735675401, 5.67298602295219792303550127849, 6.42553959191129987387624299685, 6.95245121644489598522776459289, 7.928404807665068708982625000493, 8.418808961827942545368165151014, 9.400340620675095797645449840446

Graph of the $Z$-function along the critical line