Properties

Label 2-42e2-1.1-c1-0-3
Degree $2$
Conductor $1764$
Sign $1$
Analytic cond. $14.0856$
Root an. cond. $3.75308$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 2·11-s + 3·13-s + 8·17-s + 19-s − 8·23-s − 25-s − 4·29-s − 3·31-s − 37-s + 6·41-s + 11·43-s + 6·47-s + 12·53-s + 4·55-s + 4·59-s + 6·61-s − 6·65-s + 13·67-s + 10·71-s + 11·73-s − 3·79-s + 2·83-s − 16·85-s − 2·95-s − 10·97-s + 10·101-s + ⋯
L(s)  = 1  − 0.894·5-s − 0.603·11-s + 0.832·13-s + 1.94·17-s + 0.229·19-s − 1.66·23-s − 1/5·25-s − 0.742·29-s − 0.538·31-s − 0.164·37-s + 0.937·41-s + 1.67·43-s + 0.875·47-s + 1.64·53-s + 0.539·55-s + 0.520·59-s + 0.768·61-s − 0.744·65-s + 1.58·67-s + 1.18·71-s + 1.28·73-s − 0.337·79-s + 0.219·83-s − 1.73·85-s − 0.205·95-s − 1.01·97-s + 0.995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1764\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(14.0856\)
Root analytic conductor: \(3.75308\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{1764} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1764,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.391509355\)
\(L(\frac12)\) \(\approx\) \(1.391509355\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 - 3 T + p T^{2} \)
17 \( 1 - 8 T + p T^{2} \)
19 \( 1 - T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 + 4 T + p T^{2} \)
31 \( 1 + 3 T + p T^{2} \)
37 \( 1 + T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 11 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 - 13 T + p T^{2} \)
71 \( 1 - 10 T + p T^{2} \)
73 \( 1 - 11 T + p T^{2} \)
79 \( 1 + 3 T + p T^{2} \)
83 \( 1 - 2 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.340766954255413624828972920362, −8.213177915144848467457073975549, −7.86003472307450153648690839574, −7.14892757864943782004910226592, −5.84853197538479925165694215764, −5.44492897197805836950949219523, −3.97239648734814585129569787000, −3.65955604277278655695987739777, −2.31898745928895941643396981279, −0.814330480313867343133277258395, 0.814330480313867343133277258395, 2.31898745928895941643396981279, 3.65955604277278655695987739777, 3.97239648734814585129569787000, 5.44492897197805836950949219523, 5.84853197538479925165694215764, 7.14892757864943782004910226592, 7.86003472307450153648690839574, 8.213177915144848467457073975549, 9.340766954255413624828972920362

Graph of the $Z$-function along the critical line