L(s) = 1 | + 0.409i·2-s + 3-s + 1.83·4-s + 4.13i·5-s + 0.409i·6-s − 5.18i·7-s + 1.56i·8-s + 9-s − 1.69·10-s − i·11-s + 1.83·12-s + (2.62 + 2.47i)13-s + 2.12·14-s + 4.13i·15-s + 3.02·16-s + 0.488·17-s + ⋯ |
L(s) = 1 | + 0.289i·2-s + 0.577·3-s + 0.916·4-s + 1.85i·5-s + 0.167i·6-s − 1.95i·7-s + 0.554i·8-s + 0.333·9-s − 0.535·10-s − 0.301i·11-s + 0.529·12-s + (0.726 + 0.686i)13-s + 0.566·14-s + 1.06i·15-s + 0.755·16-s + 0.118·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 429 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.686 - 0.726i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 429 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.686 - 0.726i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.89098 + 0.814795i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.89098 + 0.814795i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T \) |
| 11 | \( 1 + iT \) |
| 13 | \( 1 + (-2.62 - 2.47i)T \) |
good | 2 | \( 1 - 0.409iT - 2T^{2} \) |
| 5 | \( 1 - 4.13iT - 5T^{2} \) |
| 7 | \( 1 + 5.18iT - 7T^{2} \) |
| 17 | \( 1 - 0.488T + 17T^{2} \) |
| 19 | \( 1 + 0.446iT - 19T^{2} \) |
| 23 | \( 1 + 5.50T + 23T^{2} \) |
| 29 | \( 1 + 6.58T + 29T^{2} \) |
| 31 | \( 1 - 1.52iT - 31T^{2} \) |
| 37 | \( 1 - 7.87iT - 37T^{2} \) |
| 41 | \( 1 + 8.78iT - 41T^{2} \) |
| 43 | \( 1 - 4.57T + 43T^{2} \) |
| 47 | \( 1 + 5.42iT - 47T^{2} \) |
| 53 | \( 1 - 8.66T + 53T^{2} \) |
| 59 | \( 1 + 5.60iT - 59T^{2} \) |
| 61 | \( 1 + 0.855T + 61T^{2} \) |
| 67 | \( 1 + 3.87iT - 67T^{2} \) |
| 71 | \( 1 + 8.49iT - 71T^{2} \) |
| 73 | \( 1 + 5.95iT - 73T^{2} \) |
| 79 | \( 1 + 8.91T + 79T^{2} \) |
| 83 | \( 1 - 0.457iT - 83T^{2} \) |
| 89 | \( 1 - 4.68iT - 89T^{2} \) |
| 97 | \( 1 + 2.06iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.94539917339660671717066062068, −10.59758681941836505620175795665, −9.809039265442385578443775006852, −8.126334695173741803878068905162, −7.30699843148005084406340270271, −6.90039188600589836645595045539, −6.07092435989651048874288588739, −3.93032150257955636636312309353, −3.32304678488124777283055367981, −1.92720406763282712299682050200,
1.55963550244804990555737911146, 2.54996222963310855081426280688, 4.02474807516033968563846536951, 5.51567009356050232204051306507, 5.93039031644922263067601485338, 7.72971135938163635365889084529, 8.432035018970749257770489200325, 9.155458028874226036929297686485, 9.877838684132456377930739753728, 11.34625712363442729504635498876