Properties

Label 2-4284-1.1-c1-0-26
Degree $2$
Conductor $4284$
Sign $-1$
Analytic cond. $34.2079$
Root an. cond. $5.84875$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.618·5-s − 7-s + 0.763·11-s + 1.23·13-s − 17-s − 8.47·19-s + 7.70·23-s − 4.61·25-s + 5.70·29-s + 6.32·31-s + 0.618·35-s + 0.472·37-s + 0.0901·41-s − 12.0·43-s + 8.47·47-s + 49-s − 10.7·53-s − 0.472·55-s − 7.32·61-s − 0.763·65-s − 13.0·67-s − 10.9·71-s + 7.14·73-s − 0.763·77-s + 2.94·79-s − 15.4·83-s + 0.618·85-s + ⋯
L(s)  = 1  − 0.276·5-s − 0.377·7-s + 0.230·11-s + 0.342·13-s − 0.242·17-s − 1.94·19-s + 1.60·23-s − 0.923·25-s + 1.05·29-s + 1.13·31-s + 0.104·35-s + 0.0776·37-s + 0.0140·41-s − 1.84·43-s + 1.23·47-s + 0.142·49-s − 1.48·53-s − 0.0636·55-s − 0.938·61-s − 0.0947·65-s − 1.59·67-s − 1.29·71-s + 0.836·73-s − 0.0870·77-s + 0.331·79-s − 1.69·83-s + 0.0670·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4284 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4284 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4284\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(34.2079\)
Root analytic conductor: \(5.84875\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4284,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good5 \( 1 + 0.618T + 5T^{2} \)
11 \( 1 - 0.763T + 11T^{2} \)
13 \( 1 - 1.23T + 13T^{2} \)
19 \( 1 + 8.47T + 19T^{2} \)
23 \( 1 - 7.70T + 23T^{2} \)
29 \( 1 - 5.70T + 29T^{2} \)
31 \( 1 - 6.32T + 31T^{2} \)
37 \( 1 - 0.472T + 37T^{2} \)
41 \( 1 - 0.0901T + 41T^{2} \)
43 \( 1 + 12.0T + 43T^{2} \)
47 \( 1 - 8.47T + 47T^{2} \)
53 \( 1 + 10.7T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 7.32T + 61T^{2} \)
67 \( 1 + 13.0T + 67T^{2} \)
71 \( 1 + 10.9T + 71T^{2} \)
73 \( 1 - 7.14T + 73T^{2} \)
79 \( 1 - 2.94T + 79T^{2} \)
83 \( 1 + 15.4T + 83T^{2} \)
89 \( 1 + 2T + 89T^{2} \)
97 \( 1 - 15.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.161456625781903797781282308856, −7.22161491746642251775579932089, −6.47082969935363561311145006349, −6.07042041327012047461167829876, −4.83469979927733478803504324273, −4.31817944276224494322445207930, −3.35676430582467401580901416883, −2.53937532242296783826903664086, −1.36865370623512525384696058792, 0, 1.36865370623512525384696058792, 2.53937532242296783826903664086, 3.35676430582467401580901416883, 4.31817944276224494322445207930, 4.83469979927733478803504324273, 6.07042041327012047461167829876, 6.47082969935363561311145006349, 7.22161491746642251775579932089, 8.161456625781903797781282308856

Graph of the $Z$-function along the critical line