| L(s) = 1 | − 1.44·2-s + 0.0881·4-s + 1.35·7-s + 2.76·8-s − 4.85·11-s + 0.198·13-s − 1.96·14-s − 4.16·16-s + 1.13·17-s − 19-s + 7.00·22-s − 2.55·23-s − 0.286·26-s + 0.119·28-s + 10.2·29-s + 2.51·31-s + 0.498·32-s − 1.64·34-s − 0.137·37-s + 1.44·38-s + 11.7·41-s − 7.59·43-s − 0.427·44-s + 3.69·46-s − 2.69·47-s − 5.15·49-s + 0.0174·52-s + ⋯ |
| L(s) = 1 | − 1.02·2-s + 0.0440·4-s + 0.512·7-s + 0.976·8-s − 1.46·11-s + 0.0549·13-s − 0.524·14-s − 1.04·16-s + 0.275·17-s − 0.229·19-s + 1.49·22-s − 0.532·23-s − 0.0561·26-s + 0.0226·28-s + 1.90·29-s + 0.451·31-s + 0.0880·32-s − 0.281·34-s − 0.0225·37-s + 0.234·38-s + 1.83·41-s − 1.15·43-s − 0.0644·44-s + 0.544·46-s − 0.392·47-s − 0.736·49-s + 0.00242·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 + T \) |
| good | 2 | \( 1 + 1.44T + 2T^{2} \) |
| 7 | \( 1 - 1.35T + 7T^{2} \) |
| 11 | \( 1 + 4.85T + 11T^{2} \) |
| 13 | \( 1 - 0.198T + 13T^{2} \) |
| 17 | \( 1 - 1.13T + 17T^{2} \) |
| 23 | \( 1 + 2.55T + 23T^{2} \) |
| 29 | \( 1 - 10.2T + 29T^{2} \) |
| 31 | \( 1 - 2.51T + 31T^{2} \) |
| 37 | \( 1 + 0.137T + 37T^{2} \) |
| 41 | \( 1 - 11.7T + 41T^{2} \) |
| 43 | \( 1 + 7.59T + 43T^{2} \) |
| 47 | \( 1 + 2.69T + 47T^{2} \) |
| 53 | \( 1 + 12.8T + 53T^{2} \) |
| 59 | \( 1 + 5.82T + 59T^{2} \) |
| 61 | \( 1 + 7.58T + 61T^{2} \) |
| 67 | \( 1 - 8.01T + 67T^{2} \) |
| 71 | \( 1 - 8.82T + 71T^{2} \) |
| 73 | \( 1 + 11.9T + 73T^{2} \) |
| 79 | \( 1 - 10.7T + 79T^{2} \) |
| 83 | \( 1 + 3.77T + 83T^{2} \) |
| 89 | \( 1 + 9.36T + 89T^{2} \) |
| 97 | \( 1 - 0.198T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.100984142282920194712959234942, −7.71704200896829465038019584159, −6.76209301162401779026100789245, −5.86676251130974439579647131234, −4.84629155472430061537404777657, −4.53161878922512378318427726451, −3.17195507606839336942758573420, −2.23414646177415298025787896359, −1.18425668638879174901563770241, 0,
1.18425668638879174901563770241, 2.23414646177415298025787896359, 3.17195507606839336942758573420, 4.53161878922512378318427726451, 4.84629155472430061537404777657, 5.86676251130974439579647131234, 6.76209301162401779026100789245, 7.71704200896829465038019584159, 8.100984142282920194712959234942