Properties

Label 2-4275-1.1-c1-0-68
Degree $2$
Conductor $4275$
Sign $1$
Analytic cond. $34.1360$
Root an. cond. $5.84260$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.52·2-s + 4.39·4-s − 4.92·7-s + 6.05·8-s + 1.13·11-s + 4·13-s − 12.4·14-s + 6.52·16-s + 6.79·17-s − 19-s + 2.86·22-s − 1.92·23-s + 10.1·26-s − 21.6·28-s + 5·29-s + 5.13·31-s + 4.39·32-s + 17.1·34-s + 9.05·37-s − 2.52·38-s − 3.86·41-s + 4·43-s + 4.98·44-s − 4.86·46-s − 4.26·47-s + 17.2·49-s + 17.5·52-s + ⋯
L(s)  = 1  + 1.78·2-s + 2.19·4-s − 1.86·7-s + 2.14·8-s + 0.341·11-s + 1.10·13-s − 3.32·14-s + 1.63·16-s + 1.64·17-s − 0.229·19-s + 0.611·22-s − 0.401·23-s + 1.98·26-s − 4.09·28-s + 0.928·29-s + 0.922·31-s + 0.777·32-s + 2.94·34-s + 1.48·37-s − 0.410·38-s − 0.603·41-s + 0.609·43-s + 0.751·44-s − 0.717·46-s − 0.622·47-s + 2.46·49-s + 2.43·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4275\)    =    \(3^{2} \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(34.1360\)
Root analytic conductor: \(5.84260\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4275,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.565351413\)
\(L(\frac12)\) \(\approx\) \(5.565351413\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good2 \( 1 - 2.52T + 2T^{2} \)
7 \( 1 + 4.92T + 7T^{2} \)
11 \( 1 - 1.13T + 11T^{2} \)
13 \( 1 - 4T + 13T^{2} \)
17 \( 1 - 6.79T + 17T^{2} \)
23 \( 1 + 1.92T + 23T^{2} \)
29 \( 1 - 5T + 29T^{2} \)
31 \( 1 - 5.13T + 31T^{2} \)
37 \( 1 - 9.05T + 37T^{2} \)
41 \( 1 + 3.86T + 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 + 4.26T + 47T^{2} \)
53 \( 1 - 13.1T + 53T^{2} \)
59 \( 1 + 9.19T + 59T^{2} \)
61 \( 1 - 0.733T + 61T^{2} \)
67 \( 1 - 4.86T + 67T^{2} \)
71 \( 1 + 11.1T + 71T^{2} \)
73 \( 1 - 11.1T + 73T^{2} \)
79 \( 1 + 13.7T + 79T^{2} \)
83 \( 1 + 0.866T + 83T^{2} \)
89 \( 1 - 10.8T + 89T^{2} \)
97 \( 1 + 9.32T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.197346088735846038674474210800, −7.26161459876849882633847052211, −6.49367529920704214041316177307, −6.10039755034734567915224268915, −5.59772730884063189680078578888, −4.47072332759465064448197358266, −3.73657120223801140246363342094, −3.23202477100561047745649211213, −2.55568794204093550042405489211, −1.06135813064083074717092340932, 1.06135813064083074717092340932, 2.55568794204093550042405489211, 3.23202477100561047745649211213, 3.73657120223801140246363342094, 4.47072332759465064448197358266, 5.59772730884063189680078578888, 6.10039755034734567915224268915, 6.49367529920704214041316177307, 7.26161459876849882633847052211, 8.197346088735846038674474210800

Graph of the $Z$-function along the critical line