Properties

Label 2-4275-1.1-c1-0-39
Degree $2$
Conductor $4275$
Sign $1$
Analytic cond. $34.1360$
Root an. cond. $5.84260$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s − 3·7-s + 3·11-s + 6·13-s + 6·14-s − 4·16-s + 3·17-s − 19-s − 6·22-s + 4·23-s − 12·26-s − 6·28-s + 10·29-s + 2·31-s + 8·32-s − 6·34-s − 8·37-s + 2·38-s + 8·41-s + 43-s + 6·44-s − 8·46-s + 3·47-s + 2·49-s + 12·52-s − 6·53-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s − 1.13·7-s + 0.904·11-s + 1.66·13-s + 1.60·14-s − 16-s + 0.727·17-s − 0.229·19-s − 1.27·22-s + 0.834·23-s − 2.35·26-s − 1.13·28-s + 1.85·29-s + 0.359·31-s + 1.41·32-s − 1.02·34-s − 1.31·37-s + 0.324·38-s + 1.24·41-s + 0.152·43-s + 0.904·44-s − 1.17·46-s + 0.437·47-s + 2/7·49-s + 1.66·52-s − 0.824·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4275\)    =    \(3^{2} \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(34.1360\)
Root analytic conductor: \(5.84260\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4275,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9571149264\)
\(L(\frac12)\) \(\approx\) \(0.9571149264\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good2 \( 1 + p T + p T^{2} \)
7 \( 1 + 3 T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 10 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 - 8 T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 - 3 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 7 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 - 11 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.606183820437833600103441591404, −7.894260554784329962490563183694, −6.88825456221220294222029117452, −6.53510001975850170227378349519, −5.79207551816884332992761614767, −4.51278071469945430408773548975, −3.62131961487037887495504734941, −2.83322239075698896831855159072, −1.44946100306976919245519280375, −0.76619087385360988407104513132, 0.76619087385360988407104513132, 1.44946100306976919245519280375, 2.83322239075698896831855159072, 3.62131961487037887495504734941, 4.51278071469945430408773548975, 5.79207551816884332992761614767, 6.53510001975850170227378349519, 6.88825456221220294222029117452, 7.894260554784329962490563183694, 8.606183820437833600103441591404

Graph of the $Z$-function along the critical line