L(s) = 1 | − 0.246·2-s − 1.93·4-s − 1.69·7-s + 0.972·8-s + 0.911·11-s − 1.55·13-s + 0.417·14-s + 3.63·16-s + 5.29·17-s − 19-s − 0.225·22-s + 4.24·23-s + 0.384·26-s + 3.28·28-s − 5.00·29-s + 1.82·31-s − 2.84·32-s − 1.30·34-s − 6.29·37-s + 0.246·38-s − 4.18·41-s − 7.31·43-s − 1.76·44-s − 1.04·46-s − 2.04·47-s − 4.13·49-s + 3.01·52-s + ⋯ |
L(s) = 1 | − 0.174·2-s − 0.969·4-s − 0.639·7-s + 0.343·8-s + 0.274·11-s − 0.431·13-s + 0.111·14-s + 0.909·16-s + 1.28·17-s − 0.229·19-s − 0.0480·22-s + 0.885·23-s + 0.0753·26-s + 0.620·28-s − 0.930·29-s + 0.328·31-s − 0.502·32-s − 0.224·34-s − 1.03·37-s + 0.0400·38-s − 0.652·41-s − 1.11·43-s − 0.266·44-s − 0.154·46-s − 0.298·47-s − 0.591·49-s + 0.418·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.032128702\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.032128702\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 + T \) |
good | 2 | \( 1 + 0.246T + 2T^{2} \) |
| 7 | \( 1 + 1.69T + 7T^{2} \) |
| 11 | \( 1 - 0.911T + 11T^{2} \) |
| 13 | \( 1 + 1.55T + 13T^{2} \) |
| 17 | \( 1 - 5.29T + 17T^{2} \) |
| 23 | \( 1 - 4.24T + 23T^{2} \) |
| 29 | \( 1 + 5.00T + 29T^{2} \) |
| 31 | \( 1 - 1.82T + 31T^{2} \) |
| 37 | \( 1 + 6.29T + 37T^{2} \) |
| 41 | \( 1 + 4.18T + 41T^{2} \) |
| 43 | \( 1 + 7.31T + 43T^{2} \) |
| 47 | \( 1 + 2.04T + 47T^{2} \) |
| 53 | \( 1 + 2.70T + 53T^{2} \) |
| 59 | \( 1 + 9.87T + 59T^{2} \) |
| 61 | \( 1 - 0.542T + 61T^{2} \) |
| 67 | \( 1 - 13.9T + 67T^{2} \) |
| 71 | \( 1 - 12.8T + 71T^{2} \) |
| 73 | \( 1 - 2.80T + 73T^{2} \) |
| 79 | \( 1 - 1.59T + 79T^{2} \) |
| 83 | \( 1 - 12.2T + 83T^{2} \) |
| 89 | \( 1 + 2.91T + 89T^{2} \) |
| 97 | \( 1 + 1.55T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.426707676430772437451071189181, −7.77667519957837606442561320936, −6.98590356714992552718481904634, −6.19282341387116049332115622354, −5.24990266022017163118141868418, −4.80423989237671462796517171126, −3.60840451625210235409717677486, −3.26111830200762177772592548768, −1.78753134693225341709791571982, −0.60033970535823511752694568237,
0.60033970535823511752694568237, 1.78753134693225341709791571982, 3.26111830200762177772592548768, 3.60840451625210235409717677486, 4.80423989237671462796517171126, 5.24990266022017163118141868418, 6.19282341387116049332115622354, 6.98590356714992552718481904634, 7.77667519957837606442561320936, 8.426707676430772437451071189181