Properties

Label 2-4275-1.1-c1-0-140
Degree $2$
Conductor $4275$
Sign $-1$
Analytic cond. $34.1360$
Root an. cond. $5.84260$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.36·2-s + 3.57·4-s − 0.784·7-s + 3.72·8-s − 2.93·11-s − 4·13-s − 1.85·14-s + 1.63·16-s − 5.15·17-s − 19-s − 6.93·22-s − 3.78·23-s − 9.44·26-s − 2.80·28-s + 5·29-s + 1.06·31-s − 3.57·32-s − 12.1·34-s + 0.722·37-s − 2.36·38-s − 7.93·41-s − 4·43-s − 10.5·44-s − 8.93·46-s − 3.87·47-s − 6.38·49-s − 14.3·52-s + ⋯
L(s)  = 1  + 1.66·2-s + 1.78·4-s − 0.296·7-s + 1.31·8-s − 0.885·11-s − 1.10·13-s − 0.495·14-s + 0.409·16-s − 1.24·17-s − 0.229·19-s − 1.47·22-s − 0.789·23-s − 1.85·26-s − 0.530·28-s + 0.928·29-s + 0.190·31-s − 0.632·32-s − 2.08·34-s + 0.118·37-s − 0.383·38-s − 1.23·41-s − 0.609·43-s − 1.58·44-s − 1.31·46-s − 0.565·47-s − 0.911·49-s − 1.98·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4275\)    =    \(3^{2} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(34.1360\)
Root analytic conductor: \(5.84260\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4275,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good2 \( 1 - 2.36T + 2T^{2} \)
7 \( 1 + 0.784T + 7T^{2} \)
11 \( 1 + 2.93T + 11T^{2} \)
13 \( 1 + 4T + 13T^{2} \)
17 \( 1 + 5.15T + 17T^{2} \)
23 \( 1 + 3.78T + 23T^{2} \)
29 \( 1 - 5T + 29T^{2} \)
31 \( 1 - 1.06T + 31T^{2} \)
37 \( 1 - 0.722T + 37T^{2} \)
41 \( 1 + 7.93T + 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 + 3.87T + 47T^{2} \)
53 \( 1 - 6.44T + 53T^{2} \)
59 \( 1 - 4.66T + 59T^{2} \)
61 \( 1 - 8.87T + 61T^{2} \)
67 \( 1 + 8.93T + 67T^{2} \)
71 \( 1 - 2.66T + 71T^{2} \)
73 \( 1 - 8.44T + 73T^{2} \)
79 \( 1 - 3.35T + 79T^{2} \)
83 \( 1 - 4.93T + 83T^{2} \)
89 \( 1 + 0.569T + 89T^{2} \)
97 \( 1 + 8.59T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.84373162863912574932877542224, −6.82845868755271393030182908296, −6.56941720787635864575756749427, −5.56872325025590433515194561882, −4.93946596039844254161023269146, −4.40292486845125305721525921109, −3.48586444181951134127886006135, −2.62547216699874871537690867155, −2.06063082697105704858324256726, 0, 2.06063082697105704858324256726, 2.62547216699874871537690867155, 3.48586444181951134127886006135, 4.40292486845125305721525921109, 4.93946596039844254161023269146, 5.56872325025590433515194561882, 6.56941720787635864575756749427, 6.82845868755271393030182908296, 7.84373162863912574932877542224

Graph of the $Z$-function along the critical line