Properties

Label 2-4275-1.1-c1-0-139
Degree $2$
Conductor $4275$
Sign $-1$
Analytic cond. $34.1360$
Root an. cond. $5.84260$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.41·2-s + 3.82·4-s − 3.41·7-s + 4.41·8-s + 1.41·11-s − 2.58·13-s − 8.24·14-s + 2.99·16-s − 6.82·17-s + 19-s + 3.41·22-s − 3.65·23-s − 6.24·26-s − 13.0·28-s − 5.07·29-s − 10.4·31-s − 1.58·32-s − 16.4·34-s + 3.07·37-s + 2.41·38-s + 4.58·41-s − 3.41·43-s + 5.41·44-s − 8.82·46-s + 11.6·47-s + 4.65·49-s − 9.89·52-s + ⋯
L(s)  = 1  + 1.70·2-s + 1.91·4-s − 1.29·7-s + 1.56·8-s + 0.426·11-s − 0.717·13-s − 2.20·14-s + 0.749·16-s − 1.65·17-s + 0.229·19-s + 0.727·22-s − 0.762·23-s − 1.22·26-s − 2.47·28-s − 0.941·29-s − 1.88·31-s − 0.280·32-s − 2.82·34-s + 0.504·37-s + 0.391·38-s + 0.716·41-s − 0.520·43-s + 0.816·44-s − 1.30·46-s + 1.70·47-s + 0.665·49-s − 1.37·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4275\)    =    \(3^{2} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(34.1360\)
Root analytic conductor: \(5.84260\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4275,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good2 \( 1 - 2.41T + 2T^{2} \)
7 \( 1 + 3.41T + 7T^{2} \)
11 \( 1 - 1.41T + 11T^{2} \)
13 \( 1 + 2.58T + 13T^{2} \)
17 \( 1 + 6.82T + 17T^{2} \)
23 \( 1 + 3.65T + 23T^{2} \)
29 \( 1 + 5.07T + 29T^{2} \)
31 \( 1 + 10.4T + 31T^{2} \)
37 \( 1 - 3.07T + 37T^{2} \)
41 \( 1 - 4.58T + 41T^{2} \)
43 \( 1 + 3.41T + 43T^{2} \)
47 \( 1 - 11.6T + 47T^{2} \)
53 \( 1 - 4T + 53T^{2} \)
59 \( 1 - 8.48T + 59T^{2} \)
61 \( 1 + 5.65T + 61T^{2} \)
67 \( 1 + 12T + 67T^{2} \)
71 \( 1 + 12.4T + 71T^{2} \)
73 \( 1 - 2T + 73T^{2} \)
79 \( 1 - 11.3T + 79T^{2} \)
83 \( 1 - 6.48T + 83T^{2} \)
89 \( 1 - 14.7T + 89T^{2} \)
97 \( 1 + 4.24T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.51115303589102797161468777280, −7.06815547519602159872205392482, −6.28748234578207812488485428215, −5.84170730043084026177542663517, −4.97596443820805829007042907843, −4.08175854079333487749314144381, −3.67315497872995440881707885943, −2.67751703285982928686704922668, −2.01799075059631958924524305554, 0, 2.01799075059631958924524305554, 2.67751703285982928686704922668, 3.67315497872995440881707885943, 4.08175854079333487749314144381, 4.97596443820805829007042907843, 5.84170730043084026177542663517, 6.28748234578207812488485428215, 7.06815547519602159872205392482, 7.51115303589102797161468777280

Graph of the $Z$-function along the critical line