Properties

Label 2-4275-1.1-c1-0-137
Degree $2$
Conductor $4275$
Sign $-1$
Analytic cond. $34.1360$
Root an. cond. $5.84260$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.17·2-s + 2.70·4-s + 0.539·7-s + 1.53·8-s − 3.17·11-s − 4.87·13-s + 1.17·14-s − 2.07·16-s + 1.36·17-s − 19-s − 6.87·22-s − 2.78·23-s − 10.5·26-s + 1.46·28-s − 3.90·29-s − 2.44·31-s − 7.58·32-s + 2.97·34-s + 4.14·37-s − 2.17·38-s − 3.01·41-s − 5.95·43-s − 8.58·44-s − 6.04·46-s − 4.04·47-s − 6.70·49-s − 13.2·52-s + ⋯
L(s)  = 1  + 1.53·2-s + 1.35·4-s + 0.203·7-s + 0.544·8-s − 0.955·11-s − 1.35·13-s + 0.312·14-s − 0.519·16-s + 0.332·17-s − 0.229·19-s − 1.46·22-s − 0.581·23-s − 2.07·26-s + 0.276·28-s − 0.725·29-s − 0.439·31-s − 1.34·32-s + 0.509·34-s + 0.680·37-s − 0.352·38-s − 0.470·41-s − 0.908·43-s − 1.29·44-s − 0.891·46-s − 0.590·47-s − 0.958·49-s − 1.83·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4275\)    =    \(3^{2} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(34.1360\)
Root analytic conductor: \(5.84260\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4275,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good2 \( 1 - 2.17T + 2T^{2} \)
7 \( 1 - 0.539T + 7T^{2} \)
11 \( 1 + 3.17T + 11T^{2} \)
13 \( 1 + 4.87T + 13T^{2} \)
17 \( 1 - 1.36T + 17T^{2} \)
23 \( 1 + 2.78T + 23T^{2} \)
29 \( 1 + 3.90T + 29T^{2} \)
31 \( 1 + 2.44T + 31T^{2} \)
37 \( 1 - 4.14T + 37T^{2} \)
41 \( 1 + 3.01T + 41T^{2} \)
43 \( 1 + 5.95T + 43T^{2} \)
47 \( 1 + 4.04T + 47T^{2} \)
53 \( 1 - 6.63T + 53T^{2} \)
59 \( 1 - 12.4T + 59T^{2} \)
61 \( 1 + 9.31T + 61T^{2} \)
67 \( 1 - 7.75T + 67T^{2} \)
71 \( 1 + 2.18T + 71T^{2} \)
73 \( 1 - 7.60T + 73T^{2} \)
79 \( 1 + 15.0T + 79T^{2} \)
83 \( 1 - 2.78T + 83T^{2} \)
89 \( 1 + 0.829T + 89T^{2} \)
97 \( 1 - 5.37T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.76972494556269389559350839937, −7.16110666571387460077964185863, −6.35921151406188504656517756037, −5.47403888093077232248924606700, −5.09188028724073876435190729329, −4.35205604185464992141291367613, −3.49473348715151351377426296007, −2.65819180016240587466074530413, −1.95155425807357077389663745189, 0, 1.95155425807357077389663745189, 2.65819180016240587466074530413, 3.49473348715151351377426296007, 4.35205604185464992141291367613, 5.09188028724073876435190729329, 5.47403888093077232248924606700, 6.35921151406188504656517756037, 7.16110666571387460077964185863, 7.76972494556269389559350839937

Graph of the $Z$-function along the critical line