Properties

Label 2-4275-1.1-c1-0-133
Degree $2$
Conductor $4275$
Sign $-1$
Analytic cond. $34.1360$
Root an. cond. $5.84260$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.04·2-s + 2.17·4-s + 1.43·7-s + 0.364·8-s − 5.70·11-s − 2·13-s + 2.93·14-s − 3.61·16-s − 3.35·17-s + 19-s − 11.6·22-s + 9.06·23-s − 4.08·26-s + 3.12·28-s − 4.45·29-s − 4.79·31-s − 8.11·32-s − 6.86·34-s − 4.35·37-s + 2.04·38-s + 8.69·41-s − 8.86·43-s − 12.4·44-s + 18.5·46-s + 3.22·47-s − 4.94·49-s − 4.35·52-s + ⋯
L(s)  = 1  + 1.44·2-s + 1.08·4-s + 0.541·7-s + 0.128·8-s − 1.71·11-s − 0.554·13-s + 0.783·14-s − 0.902·16-s − 0.814·17-s + 0.229·19-s − 2.48·22-s + 1.88·23-s − 0.801·26-s + 0.590·28-s − 0.826·29-s − 0.860·31-s − 1.43·32-s − 1.17·34-s − 0.716·37-s + 0.331·38-s + 1.35·41-s − 1.35·43-s − 1.87·44-s + 2.73·46-s + 0.471·47-s − 0.706·49-s − 0.604·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4275\)    =    \(3^{2} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(34.1360\)
Root analytic conductor: \(5.84260\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4275,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good2 \( 1 - 2.04T + 2T^{2} \)
7 \( 1 - 1.43T + 7T^{2} \)
11 \( 1 + 5.70T + 11T^{2} \)
13 \( 1 + 2T + 13T^{2} \)
17 \( 1 + 3.35T + 17T^{2} \)
23 \( 1 - 9.06T + 23T^{2} \)
29 \( 1 + 4.45T + 29T^{2} \)
31 \( 1 + 4.79T + 31T^{2} \)
37 \( 1 + 4.35T + 37T^{2} \)
41 \( 1 - 8.69T + 41T^{2} \)
43 \( 1 + 8.86T + 43T^{2} \)
47 \( 1 - 3.22T + 47T^{2} \)
53 \( 1 - 3.72T + 53T^{2} \)
59 \( 1 + 12.7T + 59T^{2} \)
61 \( 1 + 15.4T + 61T^{2} \)
67 \( 1 + 13.6T + 67T^{2} \)
71 \( 1 + 0.652T + 71T^{2} \)
73 \( 1 + 9.86T + 73T^{2} \)
79 \( 1 - 9.14T + 79T^{2} \)
83 \( 1 - 12.4T + 83T^{2} \)
89 \( 1 + 3.72T + 89T^{2} \)
97 \( 1 - 6.09T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.61923565678870705095543338559, −7.34613780158553731995503866318, −6.31392429469225532630638472871, −5.51059921626047103731175001607, −4.91583309713300909898151908917, −4.57235485325909984781001076385, −3.34323232968258226827261895187, −2.76734068156010969377183038875, −1.86543401476645950964085301393, 0, 1.86543401476645950964085301393, 2.76734068156010969377183038875, 3.34323232968258226827261895187, 4.57235485325909984781001076385, 4.91583309713300909898151908917, 5.51059921626047103731175001607, 6.31392429469225532630638472871, 7.34613780158553731995503866318, 7.61923565678870705095543338559

Graph of the $Z$-function along the critical line