Properties

Label 2-4275-1.1-c1-0-13
Degree $2$
Conductor $4275$
Sign $1$
Analytic cond. $34.1360$
Root an. cond. $5.84260$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.27·2-s − 0.377·4-s − 3.65·7-s − 3.02·8-s − 2.65·11-s − 6.13·13-s − 4.65·14-s − 3.10·16-s + 2.34·17-s + 19-s − 3.37·22-s + 5.48·23-s − 7.81·26-s + 1.37·28-s − 0.651·29-s − 6.67·31-s + 2.10·32-s + 2.99·34-s + 8.70·37-s + 1.27·38-s − 1.93·41-s + 2.65·43-s + 0.999·44-s + 6.98·46-s + 3.71·47-s + 6.33·49-s + 2.31·52-s + ⋯
L(s)  = 1  + 0.900·2-s − 0.188·4-s − 1.37·7-s − 1.07·8-s − 0.799·11-s − 1.70·13-s − 1.24·14-s − 0.775·16-s + 0.569·17-s + 0.229·19-s − 0.720·22-s + 1.14·23-s − 1.53·26-s + 0.260·28-s − 0.120·29-s − 1.19·31-s + 0.371·32-s + 0.513·34-s + 1.43·37-s + 0.206·38-s − 0.301·41-s + 0.405·43-s + 0.150·44-s + 1.02·46-s + 0.542·47-s + 0.904·49-s + 0.320·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4275\)    =    \(3^{2} \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(34.1360\)
Root analytic conductor: \(5.84260\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4275,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.223471765\)
\(L(\frac12)\) \(\approx\) \(1.223471765\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good2 \( 1 - 1.27T + 2T^{2} \)
7 \( 1 + 3.65T + 7T^{2} \)
11 \( 1 + 2.65T + 11T^{2} \)
13 \( 1 + 6.13T + 13T^{2} \)
17 \( 1 - 2.34T + 17T^{2} \)
23 \( 1 - 5.48T + 23T^{2} \)
29 \( 1 + 0.651T + 29T^{2} \)
31 \( 1 + 6.67T + 31T^{2} \)
37 \( 1 - 8.70T + 37T^{2} \)
41 \( 1 + 1.93T + 41T^{2} \)
43 \( 1 - 2.65T + 43T^{2} \)
47 \( 1 - 3.71T + 47T^{2} \)
53 \( 1 - 13.7T + 53T^{2} \)
59 \( 1 - 7.84T + 59T^{2} \)
61 \( 1 + 1.92T + 61T^{2} \)
67 \( 1 - 4.44T + 67T^{2} \)
71 \( 1 + 3.54T + 71T^{2} \)
73 \( 1 - 2.48T + 73T^{2} \)
79 \( 1 + 15.1T + 79T^{2} \)
83 \( 1 + 14.7T + 83T^{2} \)
89 \( 1 - 5.06T + 89T^{2} \)
97 \( 1 + 3.22T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.430485169432328113012234996771, −7.30848830419549750562486742258, −7.01937045931268177550805129642, −5.85014867839437979829095057142, −5.45973485174787373467421880379, −4.68021651537084873304692788291, −3.82429276756085675053713750208, −2.96331046239774651272285782731, −2.51629820984934939324235352370, −0.51205925696299163643904050997, 0.51205925696299163643904050997, 2.51629820984934939324235352370, 2.96331046239774651272285782731, 3.82429276756085675053713750208, 4.68021651537084873304692788291, 5.45973485174787373467421880379, 5.85014867839437979829095057142, 7.01937045931268177550805129642, 7.30848830419549750562486742258, 8.430485169432328113012234996771

Graph of the $Z$-function along the critical line