Properties

Label 2-4275-1.1-c1-0-124
Degree $2$
Conductor $4275$
Sign $-1$
Analytic cond. $34.1360$
Root an. cond. $5.84260$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.52·2-s + 0.316·4-s − 1.48·7-s − 2.56·8-s − 0.730·11-s + 2.32·13-s − 2.25·14-s − 4.53·16-s + 6.58·17-s − 19-s − 1.11·22-s − 2.31·23-s + 3.54·26-s − 0.467·28-s − 5.60·29-s + 3.84·31-s − 1.77·32-s + 10.0·34-s − 1.67·37-s − 1.52·38-s − 3.29·41-s − 7.69·43-s − 0.230·44-s − 3.51·46-s − 3.54·47-s − 4.80·49-s + 0.735·52-s + ⋯
L(s)  = 1  + 1.07·2-s + 0.158·4-s − 0.559·7-s − 0.906·8-s − 0.220·11-s + 0.645·13-s − 0.602·14-s − 1.13·16-s + 1.59·17-s − 0.229·19-s − 0.237·22-s − 0.482·23-s + 0.694·26-s − 0.0884·28-s − 1.04·29-s + 0.691·31-s − 0.313·32-s + 1.71·34-s − 0.274·37-s − 0.246·38-s − 0.514·41-s − 1.17·43-s − 0.0348·44-s − 0.518·46-s − 0.516·47-s − 0.686·49-s + 0.102·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4275\)    =    \(3^{2} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(34.1360\)
Root analytic conductor: \(5.84260\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4275,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good2 \( 1 - 1.52T + 2T^{2} \)
7 \( 1 + 1.48T + 7T^{2} \)
11 \( 1 + 0.730T + 11T^{2} \)
13 \( 1 - 2.32T + 13T^{2} \)
17 \( 1 - 6.58T + 17T^{2} \)
23 \( 1 + 2.31T + 23T^{2} \)
29 \( 1 + 5.60T + 29T^{2} \)
31 \( 1 - 3.84T + 31T^{2} \)
37 \( 1 + 1.67T + 37T^{2} \)
41 \( 1 + 3.29T + 41T^{2} \)
43 \( 1 + 7.69T + 43T^{2} \)
47 \( 1 + 3.54T + 47T^{2} \)
53 \( 1 + 0.480T + 53T^{2} \)
59 \( 1 - 0.249T + 59T^{2} \)
61 \( 1 + 3.73T + 61T^{2} \)
67 \( 1 + 11.2T + 67T^{2} \)
71 \( 1 + 0.249T + 71T^{2} \)
73 \( 1 + 16.6T + 73T^{2} \)
79 \( 1 - 9.54T + 79T^{2} \)
83 \( 1 + 6.81T + 83T^{2} \)
89 \( 1 + 10.7T + 89T^{2} \)
97 \( 1 - 2.32T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.045228995625568084327063940038, −7.11206749972782130132978587655, −6.25850873118319020259041029530, −5.75563028505997434781780728172, −5.06620131832482238110776888285, −4.18104730689263100273957451293, −3.42023378986795535385894195790, −2.93149998006762743486440943232, −1.54784722714706040952869705058, 0, 1.54784722714706040952869705058, 2.93149998006762743486440943232, 3.42023378986795535385894195790, 4.18104730689263100273957451293, 5.06620131832482238110776888285, 5.75563028505997434781780728172, 6.25850873118319020259041029530, 7.11206749972782130132978587655, 8.045228995625568084327063940038

Graph of the $Z$-function along the critical line