Properties

Label 2-4275-1.1-c1-0-12
Degree $2$
Conductor $4275$
Sign $1$
Analytic cond. $34.1360$
Root an. cond. $5.84260$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.13·2-s − 0.718·4-s − 4.11·7-s − 3.07·8-s − 5.78·11-s + 6.78·13-s − 4.65·14-s − 2.04·16-s − 5.41·17-s − 19-s − 6.54·22-s − 8.04·23-s + 7.67·26-s + 2.95·28-s + 5.34·29-s + 0.327·31-s + 3.83·32-s − 6.12·34-s + 10.7·37-s − 1.13·38-s − 2.70·41-s + 0.654·43-s + 4.15·44-s − 9.11·46-s + 7.67·47-s + 9.89·49-s − 4.87·52-s + ⋯
L(s)  = 1  + 0.800·2-s − 0.359·4-s − 1.55·7-s − 1.08·8-s − 1.74·11-s + 1.88·13-s − 1.24·14-s − 0.511·16-s − 1.31·17-s − 0.229·19-s − 1.39·22-s − 1.67·23-s + 1.50·26-s + 0.558·28-s + 0.991·29-s + 0.0587·31-s + 0.678·32-s − 1.05·34-s + 1.77·37-s − 0.183·38-s − 0.422·41-s + 0.0998·43-s + 0.626·44-s − 1.34·46-s + 1.11·47-s + 1.41·49-s − 0.676·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4275\)    =    \(3^{2} \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(34.1360\)
Root analytic conductor: \(5.84260\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4275,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.071248422\)
\(L(\frac12)\) \(\approx\) \(1.071248422\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good2 \( 1 - 1.13T + 2T^{2} \)
7 \( 1 + 4.11T + 7T^{2} \)
11 \( 1 + 5.78T + 11T^{2} \)
13 \( 1 - 6.78T + 13T^{2} \)
17 \( 1 + 5.41T + 17T^{2} \)
23 \( 1 + 8.04T + 23T^{2} \)
29 \( 1 - 5.34T + 29T^{2} \)
31 \( 1 - 0.327T + 31T^{2} \)
37 \( 1 - 10.7T + 37T^{2} \)
41 \( 1 + 2.70T + 41T^{2} \)
43 \( 1 - 0.654T + 43T^{2} \)
47 \( 1 - 7.67T + 47T^{2} \)
53 \( 1 - 0.813T + 53T^{2} \)
59 \( 1 - 4.97T + 59T^{2} \)
61 \( 1 + 7.87T + 61T^{2} \)
67 \( 1 - 9.76T + 67T^{2} \)
71 \( 1 + 4.97T + 71T^{2} \)
73 \( 1 + 12.7T + 73T^{2} \)
79 \( 1 + 1.01T + 79T^{2} \)
83 \( 1 - 1.25T + 83T^{2} \)
89 \( 1 - 11.4T + 89T^{2} \)
97 \( 1 - 6.78T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.504207365935079927222803790643, −7.70383236142548294143446660438, −6.45916218935417632954408952293, −6.17322836140378078183983170336, −5.55135085760086718323932300858, −4.45793772322133944540176230190, −3.90426692314431795606051638229, −3.06347244999685580040713829719, −2.39120230664905823128237765133, −0.48761109708438162804546229329, 0.48761109708438162804546229329, 2.39120230664905823128237765133, 3.06347244999685580040713829719, 3.90426692314431795606051638229, 4.45793772322133944540176230190, 5.55135085760086718323932300858, 6.17322836140378078183983170336, 6.45916218935417632954408952293, 7.70383236142548294143446660438, 8.504207365935079927222803790643

Graph of the $Z$-function along the critical line