L(s) = 1 | + 1.13·2-s − 0.718·4-s − 4.11·7-s − 3.07·8-s − 5.78·11-s + 6.78·13-s − 4.65·14-s − 2.04·16-s − 5.41·17-s − 19-s − 6.54·22-s − 8.04·23-s + 7.67·26-s + 2.95·28-s + 5.34·29-s + 0.327·31-s + 3.83·32-s − 6.12·34-s + 10.7·37-s − 1.13·38-s − 2.70·41-s + 0.654·43-s + 4.15·44-s − 9.11·46-s + 7.67·47-s + 9.89·49-s − 4.87·52-s + ⋯ |
L(s) = 1 | + 0.800·2-s − 0.359·4-s − 1.55·7-s − 1.08·8-s − 1.74·11-s + 1.88·13-s − 1.24·14-s − 0.511·16-s − 1.31·17-s − 0.229·19-s − 1.39·22-s − 1.67·23-s + 1.50·26-s + 0.558·28-s + 0.991·29-s + 0.0587·31-s + 0.678·32-s − 1.05·34-s + 1.77·37-s − 0.183·38-s − 0.422·41-s + 0.0998·43-s + 0.626·44-s − 1.34·46-s + 1.11·47-s + 1.41·49-s − 0.676·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.071248422\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.071248422\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 + T \) |
good | 2 | \( 1 - 1.13T + 2T^{2} \) |
| 7 | \( 1 + 4.11T + 7T^{2} \) |
| 11 | \( 1 + 5.78T + 11T^{2} \) |
| 13 | \( 1 - 6.78T + 13T^{2} \) |
| 17 | \( 1 + 5.41T + 17T^{2} \) |
| 23 | \( 1 + 8.04T + 23T^{2} \) |
| 29 | \( 1 - 5.34T + 29T^{2} \) |
| 31 | \( 1 - 0.327T + 31T^{2} \) |
| 37 | \( 1 - 10.7T + 37T^{2} \) |
| 41 | \( 1 + 2.70T + 41T^{2} \) |
| 43 | \( 1 - 0.654T + 43T^{2} \) |
| 47 | \( 1 - 7.67T + 47T^{2} \) |
| 53 | \( 1 - 0.813T + 53T^{2} \) |
| 59 | \( 1 - 4.97T + 59T^{2} \) |
| 61 | \( 1 + 7.87T + 61T^{2} \) |
| 67 | \( 1 - 9.76T + 67T^{2} \) |
| 71 | \( 1 + 4.97T + 71T^{2} \) |
| 73 | \( 1 + 12.7T + 73T^{2} \) |
| 79 | \( 1 + 1.01T + 79T^{2} \) |
| 83 | \( 1 - 1.25T + 83T^{2} \) |
| 89 | \( 1 - 11.4T + 89T^{2} \) |
| 97 | \( 1 - 6.78T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.504207365935079927222803790643, −7.70383236142548294143446660438, −6.45916218935417632954408952293, −6.17322836140378078183983170336, −5.55135085760086718323932300858, −4.45793772322133944540176230190, −3.90426692314431795606051638229, −3.06347244999685580040713829719, −2.39120230664905823128237765133, −0.48761109708438162804546229329,
0.48761109708438162804546229329, 2.39120230664905823128237765133, 3.06347244999685580040713829719, 3.90426692314431795606051638229, 4.45793772322133944540176230190, 5.55135085760086718323932300858, 6.17322836140378078183983170336, 6.45916218935417632954408952293, 7.70383236142548294143446660438, 8.504207365935079927222803790643