Properties

Label 2-4275-1.1-c1-0-113
Degree $2$
Conductor $4275$
Sign $-1$
Analytic cond. $34.1360$
Root an. cond. $5.84260$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 3·8-s − 5·11-s + 4·13-s − 16-s + 4·17-s − 19-s − 5·22-s + 9·23-s + 4·26-s − 7·29-s + 3·31-s + 5·32-s + 4·34-s − 10·37-s − 38-s + 2·41-s + 4·43-s + 5·44-s + 9·46-s − 8·47-s − 7·49-s − 4·52-s − 11·53-s − 7·58-s − 8·59-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 1.06·8-s − 1.50·11-s + 1.10·13-s − 1/4·16-s + 0.970·17-s − 0.229·19-s − 1.06·22-s + 1.87·23-s + 0.784·26-s − 1.29·29-s + 0.538·31-s + 0.883·32-s + 0.685·34-s − 1.64·37-s − 0.162·38-s + 0.312·41-s + 0.609·43-s + 0.753·44-s + 1.32·46-s − 1.16·47-s − 49-s − 0.554·52-s − 1.51·53-s − 0.919·58-s − 1.04·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4275\)    =    \(3^{2} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(34.1360\)
Root analytic conductor: \(5.84260\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4275,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good2 \( 1 - T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 + 5 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 9 T + p T^{2} \)
29 \( 1 + 7 T + p T^{2} \)
31 \( 1 - 3 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 + 11 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 - 13 T + p T^{2} \)
67 \( 1 - 9 T + p T^{2} \)
71 \( 1 + 10 T + p T^{2} \)
73 \( 1 + 5 T + p T^{2} \)
79 \( 1 + 15 T + p T^{2} \)
83 \( 1 + 9 T + p T^{2} \)
89 \( 1 + 3 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.136629484485467869473990139833, −7.27704990311364059872777446640, −6.38104958222058982677642160105, −5.45606563480218905168280098124, −5.22630651436391468557931895266, −4.28331882001411365877498297077, −3.32576523359967174858691921142, −2.89034509977461174442682170000, −1.39849965879244789298777254945, 0, 1.39849965879244789298777254945, 2.89034509977461174442682170000, 3.32576523359967174858691921142, 4.28331882001411365877498297077, 5.22630651436391468557931895266, 5.45606563480218905168280098124, 6.38104958222058982677642160105, 7.27704990311364059872777446640, 8.136629484485467869473990139833

Graph of the $Z$-function along the critical line