Properties

Label 2-4275-1.1-c1-0-112
Degree $2$
Conductor $4275$
Sign $1$
Analytic cond. $34.1360$
Root an. cond. $5.84260$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.53·2-s + 4.40·4-s + 2.62·7-s + 6.07·8-s + 4.12·11-s + 3.54·13-s + 6.65·14-s + 6.57·16-s − 3.91·17-s − 19-s + 10.4·22-s − 0.936·23-s + 8.97·26-s + 11.5·28-s − 1.01·29-s − 3.17·31-s + 4.48·32-s − 9.89·34-s + 7.54·37-s − 2.53·38-s − 1.95·41-s − 6.35·43-s + 18.1·44-s − 2.37·46-s + 8.97·47-s − 0.0840·49-s + 15.6·52-s + ⋯
L(s)  = 1  + 1.78·2-s + 2.20·4-s + 0.993·7-s + 2.14·8-s + 1.24·11-s + 0.983·13-s + 1.77·14-s + 1.64·16-s − 0.948·17-s − 0.229·19-s + 2.22·22-s − 0.195·23-s + 1.75·26-s + 2.18·28-s − 0.189·29-s − 0.570·31-s + 0.793·32-s − 1.69·34-s + 1.24·37-s − 0.410·38-s − 0.305·41-s − 0.968·43-s + 2.73·44-s − 0.349·46-s + 1.30·47-s − 0.0120·49-s + 2.16·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4275\)    =    \(3^{2} \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(34.1360\)
Root analytic conductor: \(5.84260\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4275,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(7.441244553\)
\(L(\frac12)\) \(\approx\) \(7.441244553\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good2 \( 1 - 2.53T + 2T^{2} \)
7 \( 1 - 2.62T + 7T^{2} \)
11 \( 1 - 4.12T + 11T^{2} \)
13 \( 1 - 3.54T + 13T^{2} \)
17 \( 1 + 3.91T + 17T^{2} \)
23 \( 1 + 0.936T + 23T^{2} \)
29 \( 1 + 1.01T + 29T^{2} \)
31 \( 1 + 3.17T + 31T^{2} \)
37 \( 1 - 7.54T + 37T^{2} \)
41 \( 1 + 1.95T + 41T^{2} \)
43 \( 1 + 6.35T + 43T^{2} \)
47 \( 1 - 8.97T + 47T^{2} \)
53 \( 1 + 11.1T + 53T^{2} \)
59 \( 1 - 7.01T + 59T^{2} \)
61 \( 1 - 12.6T + 61T^{2} \)
67 \( 1 + 3.98T + 67T^{2} \)
71 \( 1 + 7.01T + 71T^{2} \)
73 \( 1 - 7.16T + 73T^{2} \)
79 \( 1 + 11.5T + 79T^{2} \)
83 \( 1 + 14.2T + 83T^{2} \)
89 \( 1 + 13.1T + 89T^{2} \)
97 \( 1 - 3.54T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.320735118214828945153120385972, −7.30893143085063907228970155380, −6.65077015426099954119441652980, −6.04314162859593183330429108095, −5.35769273807770467502488675956, −4.39349555372846915253507374027, −4.12586607659532367697395731575, −3.23559488495787030824274219659, −2.13468265344418462524454691683, −1.38974150826902410798321559012, 1.38974150826902410798321559012, 2.13468265344418462524454691683, 3.23559488495787030824274219659, 4.12586607659532367697395731575, 4.39349555372846915253507374027, 5.35769273807770467502488675956, 6.04314162859593183330429108095, 6.65077015426099954119441652980, 7.30893143085063907228970155380, 8.320735118214828945153120385972

Graph of the $Z$-function along the critical line