Properties

Label 2-4275-1.1-c1-0-105
Degree $2$
Conductor $4275$
Sign $-1$
Analytic cond. $34.1360$
Root an. cond. $5.84260$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.618·2-s − 1.61·4-s + 0.236·7-s − 2.23·8-s + 0.763·11-s − 3.23·13-s + 0.145·14-s + 1.85·16-s + 6.47·17-s + 19-s + 0.472·22-s − 8.47·23-s − 2.00·26-s − 0.381·28-s + 9.47·29-s − 8·31-s + 5.61·32-s + 4.00·34-s − 4.76·37-s + 0.618·38-s − 1.47·41-s + 12.9·43-s − 1.23·44-s − 5.23·46-s − 5.23·47-s − 6.94·49-s + 5.23·52-s + ⋯
L(s)  = 1  + 0.437·2-s − 0.809·4-s + 0.0892·7-s − 0.790·8-s + 0.230·11-s − 0.897·13-s + 0.0389·14-s + 0.463·16-s + 1.56·17-s + 0.229·19-s + 0.100·22-s − 1.76·23-s − 0.392·26-s − 0.0721·28-s + 1.75·29-s − 1.43·31-s + 0.993·32-s + 0.685·34-s − 0.783·37-s + 0.100·38-s − 0.229·41-s + 1.97·43-s − 0.186·44-s − 0.772·46-s − 0.763·47-s − 0.992·49-s + 0.726·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4275\)    =    \(3^{2} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(34.1360\)
Root analytic conductor: \(5.84260\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4275,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good2 \( 1 - 0.618T + 2T^{2} \)
7 \( 1 - 0.236T + 7T^{2} \)
11 \( 1 - 0.763T + 11T^{2} \)
13 \( 1 + 3.23T + 13T^{2} \)
17 \( 1 - 6.47T + 17T^{2} \)
23 \( 1 + 8.47T + 23T^{2} \)
29 \( 1 - 9.47T + 29T^{2} \)
31 \( 1 + 8T + 31T^{2} \)
37 \( 1 + 4.76T + 37T^{2} \)
41 \( 1 + 1.47T + 41T^{2} \)
43 \( 1 - 12.9T + 43T^{2} \)
47 \( 1 + 5.23T + 47T^{2} \)
53 \( 1 - T + 53T^{2} \)
59 \( 1 - 6.70T + 59T^{2} \)
61 \( 1 + 7.47T + 61T^{2} \)
67 \( 1 + 3.70T + 67T^{2} \)
71 \( 1 - 1.29T + 71T^{2} \)
73 \( 1 + 14.4T + 73T^{2} \)
79 \( 1 + 4.47T + 79T^{2} \)
83 \( 1 - 7.70T + 83T^{2} \)
89 \( 1 - 5T + 89T^{2} \)
97 \( 1 + 3.70T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.973713269546405802598067380950, −7.45400904923428473535571039508, −6.37023651058869838095848191131, −5.64328968478620058450806754813, −5.05884532022753728710764904732, −4.23337508544467384548885177441, −3.53516710055313940355228217511, −2.65773431694442851335578389255, −1.34638592399151306903633148951, 0, 1.34638592399151306903633148951, 2.65773431694442851335578389255, 3.53516710055313940355228217511, 4.23337508544467384548885177441, 5.05884532022753728710764904732, 5.64328968478620058450806754813, 6.37023651058869838095848191131, 7.45400904923428473535571039508, 7.973713269546405802598067380950

Graph of the $Z$-function along the critical line