L(s) = 1 | + 0.618·2-s − 1.61·4-s + 0.236·7-s − 2.23·8-s + 0.763·11-s − 3.23·13-s + 0.145·14-s + 1.85·16-s + 6.47·17-s + 19-s + 0.472·22-s − 8.47·23-s − 2.00·26-s − 0.381·28-s + 9.47·29-s − 8·31-s + 5.61·32-s + 4.00·34-s − 4.76·37-s + 0.618·38-s − 1.47·41-s + 12.9·43-s − 1.23·44-s − 5.23·46-s − 5.23·47-s − 6.94·49-s + 5.23·52-s + ⋯ |
L(s) = 1 | + 0.437·2-s − 0.809·4-s + 0.0892·7-s − 0.790·8-s + 0.230·11-s − 0.897·13-s + 0.0389·14-s + 0.463·16-s + 1.56·17-s + 0.229·19-s + 0.100·22-s − 1.76·23-s − 0.392·26-s − 0.0721·28-s + 1.75·29-s − 1.43·31-s + 0.993·32-s + 0.685·34-s − 0.783·37-s + 0.100·38-s − 0.229·41-s + 1.97·43-s − 0.186·44-s − 0.772·46-s − 0.763·47-s − 0.992·49-s + 0.726·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 - T \) |
good | 2 | \( 1 - 0.618T + 2T^{2} \) |
| 7 | \( 1 - 0.236T + 7T^{2} \) |
| 11 | \( 1 - 0.763T + 11T^{2} \) |
| 13 | \( 1 + 3.23T + 13T^{2} \) |
| 17 | \( 1 - 6.47T + 17T^{2} \) |
| 23 | \( 1 + 8.47T + 23T^{2} \) |
| 29 | \( 1 - 9.47T + 29T^{2} \) |
| 31 | \( 1 + 8T + 31T^{2} \) |
| 37 | \( 1 + 4.76T + 37T^{2} \) |
| 41 | \( 1 + 1.47T + 41T^{2} \) |
| 43 | \( 1 - 12.9T + 43T^{2} \) |
| 47 | \( 1 + 5.23T + 47T^{2} \) |
| 53 | \( 1 - T + 53T^{2} \) |
| 59 | \( 1 - 6.70T + 59T^{2} \) |
| 61 | \( 1 + 7.47T + 61T^{2} \) |
| 67 | \( 1 + 3.70T + 67T^{2} \) |
| 71 | \( 1 - 1.29T + 71T^{2} \) |
| 73 | \( 1 + 14.4T + 73T^{2} \) |
| 79 | \( 1 + 4.47T + 79T^{2} \) |
| 83 | \( 1 - 7.70T + 83T^{2} \) |
| 89 | \( 1 - 5T + 89T^{2} \) |
| 97 | \( 1 + 3.70T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.973713269546405802598067380950, −7.45400904923428473535571039508, −6.37023651058869838095848191131, −5.64328968478620058450806754813, −5.05884532022753728710764904732, −4.23337508544467384548885177441, −3.53516710055313940355228217511, −2.65773431694442851335578389255, −1.34638592399151306903633148951, 0,
1.34638592399151306903633148951, 2.65773431694442851335578389255, 3.53516710055313940355228217511, 4.23337508544467384548885177441, 5.05884532022753728710764904732, 5.64328968478620058450806754813, 6.37023651058869838095848191131, 7.45400904923428473535571039508, 7.973713269546405802598067380950