Properties

Label 2-4275-1.1-c1-0-103
Degree $2$
Conductor $4275$
Sign $-1$
Analytic cond. $34.1360$
Root an. cond. $5.84260$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.551·2-s − 1.69·4-s − 0.574·7-s − 2.03·8-s + 3.83·11-s − 2·13-s − 0.316·14-s + 2.27·16-s − 5.17·17-s + 19-s + 2.11·22-s + 1.33·23-s − 1.10·26-s + 0.973·28-s + 0.934·29-s + 4.96·31-s + 5.32·32-s − 2.85·34-s + 3.39·37-s + 0.551·38-s + 3.37·41-s − 4.85·43-s − 6.51·44-s + 0.736·46-s − 9.88·47-s − 6.67·49-s + 3.39·52-s + ⋯
L(s)  = 1  + 0.389·2-s − 0.848·4-s − 0.217·7-s − 0.720·8-s + 1.15·11-s − 0.554·13-s − 0.0845·14-s + 0.567·16-s − 1.25·17-s + 0.229·19-s + 0.450·22-s + 0.278·23-s − 0.216·26-s + 0.184·28-s + 0.173·29-s + 0.892·31-s + 0.941·32-s − 0.489·34-s + 0.557·37-s + 0.0893·38-s + 0.526·41-s − 0.739·43-s − 0.981·44-s + 0.108·46-s − 1.44·47-s − 0.952·49-s + 0.470·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4275\)    =    \(3^{2} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(34.1360\)
Root analytic conductor: \(5.84260\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4275,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good2 \( 1 - 0.551T + 2T^{2} \)
7 \( 1 + 0.574T + 7T^{2} \)
11 \( 1 - 3.83T + 11T^{2} \)
13 \( 1 + 2T + 13T^{2} \)
17 \( 1 + 5.17T + 17T^{2} \)
23 \( 1 - 1.33T + 23T^{2} \)
29 \( 1 - 0.934T + 29T^{2} \)
31 \( 1 - 4.96T + 31T^{2} \)
37 \( 1 - 3.39T + 37T^{2} \)
41 \( 1 - 3.37T + 41T^{2} \)
43 \( 1 + 4.85T + 43T^{2} \)
47 \( 1 + 9.88T + 47T^{2} \)
53 \( 1 - 3.13T + 53T^{2} \)
59 \( 1 + 4.47T + 59T^{2} \)
61 \( 1 - 8.08T + 61T^{2} \)
67 \( 1 - 0.115T + 67T^{2} \)
71 \( 1 + 16.2T + 71T^{2} \)
73 \( 1 + 5.85T + 73T^{2} \)
79 \( 1 + 8.35T + 79T^{2} \)
83 \( 1 - 6.51T + 83T^{2} \)
89 \( 1 + 3.13T + 89T^{2} \)
97 \( 1 + 9.68T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.242017424085399140868582214763, −7.13581995265060785719617465553, −6.49459763894374992902023228875, −5.81510818305467165415796894400, −4.76922649616668110404764665987, −4.40175321855695905493862125145, −3.50933684604557562860904312392, −2.65182494579829915495011004080, −1.32466187004907691538257100221, 0, 1.32466187004907691538257100221, 2.65182494579829915495011004080, 3.50933684604557562860904312392, 4.40175321855695905493862125145, 4.76922649616668110404764665987, 5.81510818305467165415796894400, 6.49459763894374992902023228875, 7.13581995265060785719617465553, 8.242017424085399140868582214763

Graph of the $Z$-function along the critical line