Properties

Label 2-4275-1.1-c1-0-1
Degree $2$
Conductor $4275$
Sign $1$
Analytic cond. $34.1360$
Root an. cond. $5.84260$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.48·2-s + 0.193·4-s − 3.35·7-s + 2.67·8-s − 0.962·11-s − 6.15·13-s + 4.96·14-s − 4.35·16-s − 6.31·17-s − 19-s + 1.42·22-s − 4.96·23-s + 9.11·26-s − 0.649·28-s + 3.61·29-s − 5.92·31-s + 1.09·32-s + 9.35·34-s − 10.1·37-s + 1.48·38-s − 6.31·41-s + 4.12·43-s − 0.186·44-s + 7.35·46-s + 3.35·47-s + 4.22·49-s − 1.19·52-s + ⋯
L(s)  = 1  − 1.04·2-s + 0.0969·4-s − 1.26·7-s + 0.945·8-s − 0.290·11-s − 1.70·13-s + 1.32·14-s − 1.08·16-s − 1.53·17-s − 0.229·19-s + 0.303·22-s − 1.03·23-s + 1.78·26-s − 0.122·28-s + 0.670·29-s − 1.06·31-s + 0.193·32-s + 1.60·34-s − 1.66·37-s + 0.240·38-s − 0.985·41-s + 0.629·43-s − 0.0281·44-s + 1.08·46-s + 0.488·47-s + 0.603·49-s − 0.165·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4275\)    =    \(3^{2} \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(34.1360\)
Root analytic conductor: \(5.84260\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4275,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.08818580798\)
\(L(\frac12)\) \(\approx\) \(0.08818580798\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good2 \( 1 + 1.48T + 2T^{2} \)
7 \( 1 + 3.35T + 7T^{2} \)
11 \( 1 + 0.962T + 11T^{2} \)
13 \( 1 + 6.15T + 13T^{2} \)
17 \( 1 + 6.31T + 17T^{2} \)
23 \( 1 + 4.96T + 23T^{2} \)
29 \( 1 - 3.61T + 29T^{2} \)
31 \( 1 + 5.92T + 31T^{2} \)
37 \( 1 + 10.1T + 37T^{2} \)
41 \( 1 + 6.31T + 41T^{2} \)
43 \( 1 - 4.12T + 43T^{2} \)
47 \( 1 - 3.35T + 47T^{2} \)
53 \( 1 - 1.84T + 53T^{2} \)
59 \( 1 - 6.38T + 59T^{2} \)
61 \( 1 + 11.2T + 61T^{2} \)
67 \( 1 - 6.73T + 67T^{2} \)
71 \( 1 - 0.775T + 71T^{2} \)
73 \( 1 + 0.387T + 73T^{2} \)
79 \( 1 + 0.836T + 79T^{2} \)
83 \( 1 + 7.03T + 83T^{2} \)
89 \( 1 + 7.08T + 89T^{2} \)
97 \( 1 + 10.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.609355438489239698782619718701, −7.68554954653335445803519021717, −7.03583652103098120717122215649, −6.55335718502718730062263366969, −5.42584874338961346695343477570, −4.62955479722586899568757675605, −3.81592939207784763388624966067, −2.64684581164174666873556968078, −1.90459460251119556022010224113, −0.18462036036749366518097630843, 0.18462036036749366518097630843, 1.90459460251119556022010224113, 2.64684581164174666873556968078, 3.81592939207784763388624966067, 4.62955479722586899568757675605, 5.42584874338961346695343477570, 6.55335718502718730062263366969, 7.03583652103098120717122215649, 7.68554954653335445803519021717, 8.609355438489239698782619718701

Graph of the $Z$-function along the critical line