L(s) = 1 | − 1.48·2-s + 0.193·4-s − 3.35·7-s + 2.67·8-s − 0.962·11-s − 6.15·13-s + 4.96·14-s − 4.35·16-s − 6.31·17-s − 19-s + 1.42·22-s − 4.96·23-s + 9.11·26-s − 0.649·28-s + 3.61·29-s − 5.92·31-s + 1.09·32-s + 9.35·34-s − 10.1·37-s + 1.48·38-s − 6.31·41-s + 4.12·43-s − 0.186·44-s + 7.35·46-s + 3.35·47-s + 4.22·49-s − 1.19·52-s + ⋯ |
L(s) = 1 | − 1.04·2-s + 0.0969·4-s − 1.26·7-s + 0.945·8-s − 0.290·11-s − 1.70·13-s + 1.32·14-s − 1.08·16-s − 1.53·17-s − 0.229·19-s + 0.303·22-s − 1.03·23-s + 1.78·26-s − 0.122·28-s + 0.670·29-s − 1.06·31-s + 0.193·32-s + 1.60·34-s − 1.66·37-s + 0.240·38-s − 0.985·41-s + 0.629·43-s − 0.0281·44-s + 1.08·46-s + 0.488·47-s + 0.603·49-s − 0.165·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.08818580798\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.08818580798\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 + T \) |
good | 2 | \( 1 + 1.48T + 2T^{2} \) |
| 7 | \( 1 + 3.35T + 7T^{2} \) |
| 11 | \( 1 + 0.962T + 11T^{2} \) |
| 13 | \( 1 + 6.15T + 13T^{2} \) |
| 17 | \( 1 + 6.31T + 17T^{2} \) |
| 23 | \( 1 + 4.96T + 23T^{2} \) |
| 29 | \( 1 - 3.61T + 29T^{2} \) |
| 31 | \( 1 + 5.92T + 31T^{2} \) |
| 37 | \( 1 + 10.1T + 37T^{2} \) |
| 41 | \( 1 + 6.31T + 41T^{2} \) |
| 43 | \( 1 - 4.12T + 43T^{2} \) |
| 47 | \( 1 - 3.35T + 47T^{2} \) |
| 53 | \( 1 - 1.84T + 53T^{2} \) |
| 59 | \( 1 - 6.38T + 59T^{2} \) |
| 61 | \( 1 + 11.2T + 61T^{2} \) |
| 67 | \( 1 - 6.73T + 67T^{2} \) |
| 71 | \( 1 - 0.775T + 71T^{2} \) |
| 73 | \( 1 + 0.387T + 73T^{2} \) |
| 79 | \( 1 + 0.836T + 79T^{2} \) |
| 83 | \( 1 + 7.03T + 83T^{2} \) |
| 89 | \( 1 + 7.08T + 89T^{2} \) |
| 97 | \( 1 + 10.9T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.609355438489239698782619718701, −7.68554954653335445803519021717, −7.03583652103098120717122215649, −6.55335718502718730062263366969, −5.42584874338961346695343477570, −4.62955479722586899568757675605, −3.81592939207784763388624966067, −2.64684581164174666873556968078, −1.90459460251119556022010224113, −0.18462036036749366518097630843,
0.18462036036749366518097630843, 1.90459460251119556022010224113, 2.64684581164174666873556968078, 3.81592939207784763388624966067, 4.62955479722586899568757675605, 5.42584874338961346695343477570, 6.55335718502718730062263366969, 7.03583652103098120717122215649, 7.68554954653335445803519021717, 8.609355438489239698782619718701