L(s) = 1 | + (−1.27 + 1.27i)2-s + (0.263 + 0.635i)3-s − 1.26i·4-s + (−1.14 − 0.475i)6-s + (−4.01 − 1.66i)7-s + (−0.943 − 0.943i)8-s + (1.78 − 1.78i)9-s + (0.0485 + 0.0200i)11-s + (0.801 − 0.331i)12-s + 3.02·13-s + (7.24 − 3.00i)14-s + 4.93·16-s + (2.69 − 3.12i)17-s + 4.56i·18-s + (−5.52 − 5.52i)19-s + ⋯ |
L(s) = 1 | + (−0.902 + 0.902i)2-s + (0.151 + 0.366i)3-s − 0.630i·4-s + (−0.468 − 0.194i)6-s + (−1.51 − 0.628i)7-s + (−0.333 − 0.333i)8-s + (0.595 − 0.595i)9-s + (0.0146 + 0.00605i)11-s + (0.231 − 0.0958i)12-s + 0.839·13-s + (1.93 − 0.801i)14-s + 1.23·16-s + (0.653 − 0.757i)17-s + 1.07i·18-s + (−1.26 − 1.26i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.956 + 0.290i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.956 + 0.290i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.596926 - 0.0885878i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.596926 - 0.0885878i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (-2.69 + 3.12i)T \) |
good | 2 | \( 1 + (1.27 - 1.27i)T - 2iT^{2} \) |
| 3 | \( 1 + (-0.263 - 0.635i)T + (-2.12 + 2.12i)T^{2} \) |
| 7 | \( 1 + (4.01 + 1.66i)T + (4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (-0.0485 - 0.0200i)T + (7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 - 3.02T + 13T^{2} \) |
| 19 | \( 1 + (5.52 + 5.52i)T + 19iT^{2} \) |
| 23 | \( 1 + (0.398 - 0.962i)T + (-16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (-0.161 - 0.388i)T + (-20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (1.27 - 0.529i)T + (21.9 - 21.9i)T^{2} \) |
| 37 | \( 1 + (0.128 + 0.311i)T + (-26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (-2.52 + 6.09i)T + (-28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (7.06 + 7.06i)T + 43iT^{2} \) |
| 47 | \( 1 - 6.13T + 47T^{2} \) |
| 53 | \( 1 + (-8.52 + 8.52i)T - 53iT^{2} \) |
| 59 | \( 1 + (3.60 - 3.60i)T - 59iT^{2} \) |
| 61 | \( 1 + (2.28 - 5.51i)T + (-43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 + 0.916iT - 67T^{2} \) |
| 71 | \( 1 + (-3.86 + 1.59i)T + (50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (4.98 - 2.06i)T + (51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (9.22 + 3.82i)T + (55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (-4.61 + 4.61i)T - 83iT^{2} \) |
| 89 | \( 1 + 10.2iT - 89T^{2} \) |
| 97 | \( 1 + (17.7 - 7.35i)T + (68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.63297291184443698052383837424, −9.963005795898547255144617377009, −9.202538369336335291570939496818, −8.616663812990017442729647378653, −7.12907981808020948862549602673, −6.86602220990260046734125012387, −5.83718046704469167593816775659, −4.07726185987732576156311725866, −3.20267952985319882545919357029, −0.53137029217176557584753675560,
1.51371319316106998721950449636, 2.70776948718538210579684219819, 3.86477428242856416487077516031, 5.79806698355748555518663736784, 6.47154958016097484683235256726, 7.955207445054199430528730457559, 8.615807102365321730023674225986, 9.621454984330430300349507077511, 10.24122612673338283164624946688, 10.92513427175347965930638657007