L(s) = 1 | + i·2-s + i·3-s + 4-s − 6-s + i·7-s + 3i·8-s + 2·9-s − 4·11-s + i·12-s + i·13-s − 14-s − 16-s + i·17-s + 2i·18-s + 6·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 0.577i·3-s + 0.5·4-s − 0.408·6-s + 0.377i·7-s + 1.06i·8-s + 0.666·9-s − 1.20·11-s + 0.288i·12-s + 0.277i·13-s − 0.267·14-s − 0.250·16-s + 0.242i·17-s + 0.471i·18-s + 1.37·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.844885 + 1.36705i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.844885 + 1.36705i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 - iT \) |
good | 2 | \( 1 - iT - 2T^{2} \) |
| 3 | \( 1 - iT - 3T^{2} \) |
| 7 | \( 1 - iT - 7T^{2} \) |
| 11 | \( 1 + 4T + 11T^{2} \) |
| 13 | \( 1 - iT - 13T^{2} \) |
| 19 | \( 1 - 6T + 19T^{2} \) |
| 23 | \( 1 - 23T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + 7T + 31T^{2} \) |
| 37 | \( 1 + 4iT - 37T^{2} \) |
| 41 | \( 1 + 2T + 41T^{2} \) |
| 43 | \( 1 + 4iT - 43T^{2} \) |
| 47 | \( 1 + 6iT - 47T^{2} \) |
| 53 | \( 1 + 11iT - 53T^{2} \) |
| 59 | \( 1 + 8T + 59T^{2} \) |
| 61 | \( 1 - 10T + 61T^{2} \) |
| 67 | \( 1 - 8iT - 67T^{2} \) |
| 71 | \( 1 - 7T + 71T^{2} \) |
| 73 | \( 1 + 4iT - 73T^{2} \) |
| 79 | \( 1 - 11T + 79T^{2} \) |
| 83 | \( 1 - 8iT - 83T^{2} \) |
| 89 | \( 1 - 6T + 89T^{2} \) |
| 97 | \( 1 + 16iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.32747316071937976220647828529, −10.53977168770839914671963012133, −9.699677461183520456472066567750, −8.630823289347306924389441892267, −7.60084711130629951997117050429, −6.96919964975090527367086605617, −5.62190487616811240677112573918, −5.05764505512543381811566969493, −3.52247902799370925485161591156, −2.11470305054087019360518800532,
1.10409486004601865020106532370, 2.44349194376163007043486725423, 3.55529778655264588943773253420, 5.01455878607772551199993160919, 6.28447827990415011460858667792, 7.42938471590874538525234107269, 7.70435848304743941488685137839, 9.375267854060322023187195627850, 10.22430697620942944638591880988, 10.86272911899956796142579682521