L(s) = 1 | + (−0.118 + 0.363i)2-s + (0.809 + 0.587i)3-s + (1.5 + 1.08i)4-s + (−0.690 − 2.12i)5-s + (−0.309 + 0.224i)6-s + 4.61·7-s + (−1.19 + 0.865i)8-s + (−0.618 − 1.90i)9-s + 0.854·10-s + (1 − 3.07i)11-s + (0.572 + 1.76i)12-s + (−0.572 − 1.76i)13-s + (−0.545 + 1.67i)14-s + (0.690 − 2.12i)15-s + (0.972 + 2.99i)16-s + (−0.809 + 0.587i)17-s + ⋯ |
L(s) = 1 | + (−0.0834 + 0.256i)2-s + (0.467 + 0.339i)3-s + (0.750 + 0.544i)4-s + (−0.309 − 0.951i)5-s + (−0.126 + 0.0916i)6-s + 1.74·7-s + (−0.421 + 0.305i)8-s + (−0.206 − 0.634i)9-s + 0.270·10-s + (0.301 − 0.927i)11-s + (0.165 + 0.509i)12-s + (−0.158 − 0.489i)13-s + (−0.145 + 0.448i)14-s + (0.178 − 0.549i)15-s + (0.243 + 0.747i)16-s + (−0.196 + 0.142i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.968 - 0.248i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.968 - 0.248i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.91833 + 0.242341i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.91833 + 0.242341i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.690 + 2.12i)T \) |
| 17 | \( 1 + (0.809 - 0.587i)T \) |
good | 2 | \( 1 + (0.118 - 0.363i)T + (-1.61 - 1.17i)T^{2} \) |
| 3 | \( 1 + (-0.809 - 0.587i)T + (0.927 + 2.85i)T^{2} \) |
| 7 | \( 1 - 4.61T + 7T^{2} \) |
| 11 | \( 1 + (-1 + 3.07i)T + (-8.89 - 6.46i)T^{2} \) |
| 13 | \( 1 + (0.572 + 1.76i)T + (-10.5 + 7.64i)T^{2} \) |
| 19 | \( 1 + (3.92 - 2.85i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + (-0.690 + 2.12i)T + (-18.6 - 13.5i)T^{2} \) |
| 29 | \( 1 + (-5.16 - 3.75i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (8.28 - 6.01i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-3.07 - 9.45i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-0.763 - 2.35i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 6.85T + 43T^{2} \) |
| 47 | \( 1 + (2.11 + 1.53i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (3.04 + 2.21i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-3.59 - 11.0i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (1.54 - 4.75i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 + (-12.4 + 9.06i)T + (20.7 - 63.7i)T^{2} \) |
| 71 | \( 1 + (6.35 + 4.61i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-2.78 + 8.55i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (1.69 + 1.22i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (4.80 - 3.49i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + (-0.381 + 1.17i)T + (-72.0 - 52.3i)T^{2} \) |
| 97 | \( 1 + (6.59 + 4.78i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.34042304215695423963877103995, −10.47903319387965773966219176906, −8.880432449792546806275317287137, −8.414935570239989674862560741040, −7.956282765369217086522941160195, −6.58859596811431470209221721653, −5.39597174991071528412393606003, −4.30702943756398238644774227301, −3.18369492812314544036078451150, −1.53693611815392051877520411391,
1.91424830938483051107285895508, 2.38564587474365176566553644526, 4.20554004691893689590226961450, 5.36188699107157834427828212602, 6.75913636821039501952811659279, 7.42370891199279964747260988454, 8.178728959117295928757251029530, 9.420353559993133362300863585213, 10.53665178133288090665144739302, 11.30375080407499869769801319498