L(s) = 1 | + (2.11 + 1.53i)2-s + (−0.309 − 0.951i)3-s + (1.5 + 4.61i)4-s + (−1.80 + 1.31i)5-s + (0.809 − 2.48i)6-s + 2.38·7-s + (−2.30 + 7.10i)8-s + (1.61 − 1.17i)9-s − 5.85·10-s + (1 + 0.726i)11-s + (3.92 − 2.85i)12-s + (−3.92 + 2.85i)13-s + (5.04 + 3.66i)14-s + (1.80 + 1.31i)15-s + (−7.97 + 5.79i)16-s + (0.309 − 0.951i)17-s + ⋯ |
L(s) = 1 | + (1.49 + 1.08i)2-s + (−0.178 − 0.549i)3-s + (0.750 + 2.30i)4-s + (−0.809 + 0.587i)5-s + (0.330 − 1.01i)6-s + 0.900·7-s + (−0.816 + 2.51i)8-s + (0.539 − 0.391i)9-s − 1.85·10-s + (0.301 + 0.219i)11-s + (1.13 − 0.823i)12-s + (−1.08 + 0.791i)13-s + (1.34 + 0.979i)14-s + (0.467 + 0.339i)15-s + (−1.99 + 1.44i)16-s + (0.0749 − 0.230i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.187 - 0.982i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.187 - 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.76966 + 2.13915i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.76966 + 2.13915i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (1.80 - 1.31i)T \) |
| 17 | \( 1 + (-0.309 + 0.951i)T \) |
good | 2 | \( 1 + (-2.11 - 1.53i)T + (0.618 + 1.90i)T^{2} \) |
| 3 | \( 1 + (0.309 + 0.951i)T + (-2.42 + 1.76i)T^{2} \) |
| 7 | \( 1 - 2.38T + 7T^{2} \) |
| 11 | \( 1 + (-1 - 0.726i)T + (3.39 + 10.4i)T^{2} \) |
| 13 | \( 1 + (3.92 - 2.85i)T + (4.01 - 12.3i)T^{2} \) |
| 19 | \( 1 + (0.572 - 1.76i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + (-1.80 - 1.31i)T + (7.10 + 21.8i)T^{2} \) |
| 29 | \( 1 + (2.66 + 8.19i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-1.78 + 5.48i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (-6.42 + 4.66i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (-5.23 + 3.80i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + 0.145T + 43T^{2} \) |
| 47 | \( 1 + (-0.118 - 0.363i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-2.54 - 7.83i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (7.59 - 5.51i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (-4.04 - 2.93i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + (-3.52 + 10.8i)T + (-54.2 - 39.3i)T^{2} \) |
| 71 | \( 1 + (-0.354 - 1.08i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (7.28 + 5.29i)T + (22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (2.80 + 8.64i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (3.69 - 11.3i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 + (-2.61 - 1.90i)T + (27.5 + 84.6i)T^{2} \) |
| 97 | \( 1 + (-4.59 - 14.1i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.93683177493436095962805489151, −11.11596503216200290882976546342, −9.461227991021443216943959197987, −7.83513166018730250097943134539, −7.55660703827600231630049844876, −6.74137006495031240695977861753, −5.84160848854306944856703071346, −4.47685863451723831467101154878, −4.04382901026446601482372566799, −2.41893618931540249898134203754,
1.38580729821920268617424776165, 2.98284227316966226655030081373, 4.16491661022648277428382136723, 4.86828321957478443403010953717, 5.34755731956737623709459662831, 7.00395077080954744992830460867, 8.191232807707365442304670499309, 9.537694924828663209716336728405, 10.51343492619967840568366219189, 11.13648396465564339352862546304