L(s) = 1 | + 1.48·2-s + 3.29i·3-s + 0.193·4-s + 4.87i·6-s + 2.22i·7-s − 2.67·8-s − 7.83·9-s − 2.86i·11-s + 0.638i·12-s + 2.28·13-s + 3.29i·14-s − 4.35·16-s + (3.15 + 2.65i)17-s − 11.5·18-s + 5.76·19-s + ⋯ |
L(s) = 1 | + 1.04·2-s + 1.90i·3-s + 0.0969·4-s + 1.99i·6-s + 0.839i·7-s − 0.945·8-s − 2.61·9-s − 0.862i·11-s + 0.184i·12-s + 0.634·13-s + 0.879i·14-s − 1.08·16-s + (0.765 + 0.643i)17-s − 2.73·18-s + 1.32·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.765 - 0.643i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.765 - 0.643i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.639088 + 1.75366i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.639088 + 1.75366i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (-3.15 - 2.65i)T \) |
good | 2 | \( 1 - 1.48T + 2T^{2} \) |
| 3 | \( 1 - 3.29iT - 3T^{2} \) |
| 7 | \( 1 - 2.22iT - 7T^{2} \) |
| 11 | \( 1 + 2.86iT - 11T^{2} \) |
| 13 | \( 1 - 2.28T + 13T^{2} \) |
| 19 | \( 1 - 5.76T + 19T^{2} \) |
| 23 | \( 1 - 1.58iT - 23T^{2} \) |
| 29 | \( 1 - 9.23iT - 29T^{2} \) |
| 31 | \( 1 + 1.15iT - 31T^{2} \) |
| 37 | \( 1 - 0.514iT - 37T^{2} \) |
| 41 | \( 1 - 7.09iT - 41T^{2} \) |
| 43 | \( 1 + 7.89T + 43T^{2} \) |
| 47 | \( 1 - 3.03T + 47T^{2} \) |
| 53 | \( 1 - 5.73T + 53T^{2} \) |
| 59 | \( 1 + 7.50T + 59T^{2} \) |
| 61 | \( 1 + 11.8iT - 61T^{2} \) |
| 67 | \( 1 - 7.35T + 67T^{2} \) |
| 71 | \( 1 + 8.80iT - 71T^{2} \) |
| 73 | \( 1 + 2.65iT - 73T^{2} \) |
| 79 | \( 1 + 11.4iT - 79T^{2} \) |
| 83 | \( 1 - 3.08T + 83T^{2} \) |
| 89 | \( 1 - 2.15T + 89T^{2} \) |
| 97 | \( 1 - 8.72iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.52284607153626153384823842564, −10.73523495519081327458972201026, −9.672668978451985835844495248360, −9.001998240742008648035340390595, −8.284204554202767961512558465371, −6.10133655695673974867401004248, −5.47778936992801384962393316123, −4.81725843405412052491277975555, −3.46657527955908020102966059679, −3.23209841217578580637727543108,
0.912105174608685865190191561326, 2.52046630249875102085205311784, 3.75554655579716091157645102437, 5.20037599032290634139940591865, 6.08538601996168966526959932757, 7.06994747418436006377180009572, 7.64203025291849273891202041040, 8.744962564256339881819426112396, 9.963663646947963552144440333679, 11.47609297996199021195190339686