L(s) = 1 | + 0.311·2-s + 1.12i·3-s − 1.90·4-s + 0.349i·6-s − 3.60i·7-s − 1.21·8-s + 1.73·9-s − 5.74i·11-s − 2.13i·12-s − 2.59·13-s − 1.12i·14-s + 3.42·16-s + (2.52 + 3.25i)17-s + 0.541·18-s + 4.28·19-s + ⋯ |
L(s) = 1 | + 0.219·2-s + 0.648i·3-s − 0.951·4-s + 0.142i·6-s − 1.36i·7-s − 0.429·8-s + 0.579·9-s − 1.73i·11-s − 0.616i·12-s − 0.718·13-s − 0.300i·14-s + 0.857·16-s + (0.612 + 0.790i)17-s + 0.127·18-s + 0.982·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.612 + 0.790i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.612 + 0.790i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.03745 - 0.508569i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.03745 - 0.508569i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (-2.52 - 3.25i)T \) |
good | 2 | \( 1 - 0.311T + 2T^{2} \) |
| 3 | \( 1 - 1.12iT - 3T^{2} \) |
| 7 | \( 1 + 3.60iT - 7T^{2} \) |
| 11 | \( 1 + 5.74iT - 11T^{2} \) |
| 13 | \( 1 + 2.59T + 13T^{2} \) |
| 19 | \( 1 - 4.28T + 19T^{2} \) |
| 23 | \( 1 + 1.47iT - 23T^{2} \) |
| 29 | \( 1 + 5.50iT - 29T^{2} \) |
| 31 | \( 1 + 8.33iT - 31T^{2} \) |
| 37 | \( 1 + 6.20iT - 37T^{2} \) |
| 41 | \( 1 - 3.95iT - 41T^{2} \) |
| 43 | \( 1 + 9.76T + 43T^{2} \) |
| 47 | \( 1 + 6.62T + 47T^{2} \) |
| 53 | \( 1 + 0.658T + 53T^{2} \) |
| 59 | \( 1 - 5.95T + 59T^{2} \) |
| 61 | \( 1 - 8.76iT - 61T^{2} \) |
| 67 | \( 1 - 0.428T + 67T^{2} \) |
| 71 | \( 1 + 1.36iT - 71T^{2} \) |
| 73 | \( 1 + 3.25iT - 73T^{2} \) |
| 79 | \( 1 - 1.89iT - 79T^{2} \) |
| 83 | \( 1 - 16.6T + 83T^{2} \) |
| 89 | \( 1 + 3.52T + 89T^{2} \) |
| 97 | \( 1 - 11.7iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.84783469923300946359005799336, −10.04262683519196172099114086464, −9.513295993431561715305642402357, −8.287624766115572797715725201302, −7.53080047813107415823293483667, −6.10567796359409548183083884162, −5.04807847161394215972179019271, −4.02929183418006490781308964749, −3.43853079081163864634765114323, −0.76891583825070497969614669581,
1.70902442509122564985231353401, 3.15255545924704785829957582422, 4.86019945901865684634734409210, 5.21430912355587137560393493930, 6.75757007331198180916139971413, 7.54520513245190358987985882696, 8.611546190382507213172758518339, 9.666650377934264430273116432521, 9.938487480016797730012846377589, 11.86164148955144113109740070244