L(s) = 1 | + 2.17·2-s + 2.21i·3-s + 2.70·4-s + 4.80i·6-s − 1.02i·7-s + 1.53·8-s − 1.90·9-s + 4.98i·11-s + 6.00i·12-s + 3.87·13-s − 2.21i·14-s − 2.07·16-s + (1.63 − 3.78i)17-s − 4.14·18-s − 4.04·19-s + ⋯ |
L(s) = 1 | + 1.53·2-s + 1.27i·3-s + 1.35·4-s + 1.96i·6-s − 0.385i·7-s + 0.544·8-s − 0.636·9-s + 1.50i·11-s + 1.73i·12-s + 1.07·13-s − 0.592i·14-s − 0.519·16-s + (0.395 − 0.918i)17-s − 0.976·18-s − 0.929·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.395 - 0.918i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.395 - 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.53894 + 1.67093i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.53894 + 1.67093i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (-1.63 + 3.78i)T \) |
good | 2 | \( 1 - 2.17T + 2T^{2} \) |
| 3 | \( 1 - 2.21iT - 3T^{2} \) |
| 7 | \( 1 + 1.02iT - 7T^{2} \) |
| 11 | \( 1 - 4.98iT - 11T^{2} \) |
| 13 | \( 1 - 3.87T + 13T^{2} \) |
| 19 | \( 1 + 4.04T + 19T^{2} \) |
| 23 | \( 1 + 7.02iT - 23T^{2} \) |
| 29 | \( 1 + 0.644iT - 29T^{2} \) |
| 31 | \( 1 + 4.25iT - 31T^{2} \) |
| 37 | \( 1 + 10.2iT - 37T^{2} \) |
| 41 | \( 1 - 5.82iT - 41T^{2} \) |
| 43 | \( 1 - 5.86T + 43T^{2} \) |
| 47 | \( 1 + 10.3T + 47T^{2} \) |
| 53 | \( 1 - 11.3T + 53T^{2} \) |
| 59 | \( 1 + 0.447T + 59T^{2} \) |
| 61 | \( 1 + 3.14iT - 61T^{2} \) |
| 67 | \( 1 + 5.07T + 67T^{2} \) |
| 71 | \( 1 - 3.41iT - 71T^{2} \) |
| 73 | \( 1 - 3.78iT - 73T^{2} \) |
| 79 | \( 1 + 0.376iT - 79T^{2} \) |
| 83 | \( 1 + 3.57T + 83T^{2} \) |
| 89 | \( 1 + 2.63T + 89T^{2} \) |
| 97 | \( 1 - 10.9iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.36151599492259332733032359253, −10.61446524389363358381586866416, −9.774572919559425188196852351784, −8.822388100771552330145172185292, −7.31090971259353292910481397607, −6.30685877151795261009865281654, −5.18749484390966921189980436230, −4.32987479106984200799021775873, −3.91462519577942106421140241392, −2.49190393518664640539965398266,
1.53256146755489070250067021793, 3.00859938335842069766558251773, 3.94007947996872996627297978573, 5.55746968985652384823615754350, 6.06805043545206972453595156147, 6.84390375350778083774579211767, 8.127626760751069265928581179162, 8.820310416304616188003109325936, 10.60802026198560797544733453085, 11.49617175947372065783619207556