Properties

Label 2-425-1.1-c1-0-12
Degree $2$
Conductor $425$
Sign $-1$
Analytic cond. $3.39364$
Root an. cond. $1.84218$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s − 4-s + 2·6-s + 2·7-s + 3·8-s + 9-s + 2·11-s + 2·12-s − 2·13-s − 2·14-s − 16-s − 17-s − 18-s − 4·21-s − 2·22-s − 6·23-s − 6·24-s + 2·26-s + 4·27-s − 2·28-s − 6·29-s − 10·31-s − 5·32-s − 4·33-s + 34-s − 36-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s − 1/2·4-s + 0.816·6-s + 0.755·7-s + 1.06·8-s + 1/3·9-s + 0.603·11-s + 0.577·12-s − 0.554·13-s − 0.534·14-s − 1/4·16-s − 0.242·17-s − 0.235·18-s − 0.872·21-s − 0.426·22-s − 1.25·23-s − 1.22·24-s + 0.392·26-s + 0.769·27-s − 0.377·28-s − 1.11·29-s − 1.79·31-s − 0.883·32-s − 0.696·33-s + 0.171·34-s − 1/6·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(425\)    =    \(5^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(3.39364\)
Root analytic conductor: \(1.84218\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 425,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
17 \( 1 + T \)
good2 \( 1 + T + p T^{2} \)
3 \( 1 + 2 T + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 10 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 + 14 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 + 2 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 + 14 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.80523599860593932803878715836, −9.837106295977008288474085621762, −9.004724365548119637924595418752, −8.015272075570334712392855961758, −7.11494978016373279342190063323, −5.84510932829609015266318935243, −5.00348909499756108069005690763, −4.01843802221452326726380097386, −1.68337813127645467731093868081, 0, 1.68337813127645467731093868081, 4.01843802221452326726380097386, 5.00348909499756108069005690763, 5.84510932829609015266318935243, 7.11494978016373279342190063323, 8.015272075570334712392855961758, 9.004724365548119637924595418752, 9.837106295977008288474085621762, 10.80523599860593932803878715836

Graph of the $Z$-function along the critical line