Properties

Label 2-4232-1.1-c1-0-72
Degree $2$
Conductor $4232$
Sign $1$
Analytic cond. $33.7926$
Root an. cond. $5.81314$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·5-s + 4·7-s − 2·9-s + 2·11-s + 7·13-s − 2·15-s + 4·17-s + 6·19-s − 4·21-s − 25-s + 5·27-s + 5·29-s + 3·31-s − 2·33-s + 8·35-s − 2·37-s − 7·39-s − 9·41-s − 8·43-s − 4·45-s − 47-s + 9·49-s − 4·51-s + 6·53-s + 4·55-s − 6·57-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.894·5-s + 1.51·7-s − 2/3·9-s + 0.603·11-s + 1.94·13-s − 0.516·15-s + 0.970·17-s + 1.37·19-s − 0.872·21-s − 1/5·25-s + 0.962·27-s + 0.928·29-s + 0.538·31-s − 0.348·33-s + 1.35·35-s − 0.328·37-s − 1.12·39-s − 1.40·41-s − 1.21·43-s − 0.596·45-s − 0.145·47-s + 9/7·49-s − 0.560·51-s + 0.824·53-s + 0.539·55-s − 0.794·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4232 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4232 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4232\)    =    \(2^{3} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(33.7926\)
Root analytic conductor: \(5.81314\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4232,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.753284331\)
\(L(\frac12)\) \(\approx\) \(2.753284331\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 \)
good3 \( 1 + T + p T^{2} \)
5 \( 1 - 2 T + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 - 7 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 5 T + p T^{2} \)
31 \( 1 - 3 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 9 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 + T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 + 13 T + p T^{2} \)
73 \( 1 + 3 T + p T^{2} \)
79 \( 1 + 6 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 - 4 T + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.463523181421092226706669526699, −7.82294576929983536521825169596, −6.72912342512596841517948904434, −6.05220492851837615274997431163, −5.45258791200978400763978660919, −4.96279447908039424391057317925, −3.83077416135681826938358923048, −2.94668432293515666131888787217, −1.53923462014814349403579065440, −1.17461094001747730469015874270, 1.17461094001747730469015874270, 1.53923462014814349403579065440, 2.94668432293515666131888787217, 3.83077416135681826938358923048, 4.96279447908039424391057317925, 5.45258791200978400763978660919, 6.05220492851837615274997431163, 6.72912342512596841517948904434, 7.82294576929983536521825169596, 8.463523181421092226706669526699

Graph of the $Z$-function along the critical line