Properties

Label 2-4232-1.1-c1-0-65
Degree $2$
Conductor $4232$
Sign $1$
Analytic cond. $33.7926$
Root an. cond. $5.81314$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 2·7-s + 6·9-s − 5·13-s + 6·17-s − 6·19-s + 6·21-s − 5·25-s + 9·27-s + 9·29-s + 3·31-s + 8·37-s − 15·39-s + 3·41-s + 8·43-s + 7·47-s − 3·49-s + 18·51-s + 2·53-s − 18·57-s + 4·59-s + 10·61-s + 12·63-s − 8·67-s + 7·71-s + 9·73-s − 15·75-s + ⋯
L(s)  = 1  + 1.73·3-s + 0.755·7-s + 2·9-s − 1.38·13-s + 1.45·17-s − 1.37·19-s + 1.30·21-s − 25-s + 1.73·27-s + 1.67·29-s + 0.538·31-s + 1.31·37-s − 2.40·39-s + 0.468·41-s + 1.21·43-s + 1.02·47-s − 3/7·49-s + 2.52·51-s + 0.274·53-s − 2.38·57-s + 0.520·59-s + 1.28·61-s + 1.51·63-s − 0.977·67-s + 0.830·71-s + 1.05·73-s − 1.73·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4232 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4232 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4232\)    =    \(2^{3} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(33.7926\)
Root analytic conductor: \(5.81314\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4232,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.125464991\)
\(L(\frac12)\) \(\approx\) \(4.125464991\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 \)
good3 \( 1 - p T + p T^{2} \)
5 \( 1 + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + 5 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 9 T + p T^{2} \)
31 \( 1 - 3 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 7 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 - 7 T + p T^{2} \)
73 \( 1 - 9 T + p T^{2} \)
79 \( 1 - 6 T + p T^{2} \)
83 \( 1 - 14 T + p T^{2} \)
89 \( 1 + 16 T + p T^{2} \)
97 \( 1 + 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.136709949264160163400131160245, −7.971762573337755659388498262792, −7.29827869972219621745553541348, −6.35878191326598774890091328679, −5.24164937704147300063994990437, −4.39203650859597269987708926618, −3.82836895032894631923136704271, −2.58998557752273208121368780152, −2.38576533809286741374919255327, −1.13034072062787753744301249711, 1.13034072062787753744301249711, 2.38576533809286741374919255327, 2.58998557752273208121368780152, 3.82836895032894631923136704271, 4.39203650859597269987708926618, 5.24164937704147300063994990437, 6.35878191326598774890091328679, 7.29827869972219621745553541348, 7.971762573337755659388498262792, 8.136709949264160163400131160245

Graph of the $Z$-function along the critical line