Properties

Label 2-4205-1.1-c1-0-64
Degree $2$
Conductor $4205$
Sign $-1$
Analytic cond. $33.5770$
Root an. cond. $5.79457$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.740·2-s − 3.20·3-s − 1.45·4-s − 5-s + 2.37·6-s − 1.10·7-s + 2.55·8-s + 7.29·9-s + 0.740·10-s − 6.39·11-s + 4.65·12-s − 1.24·13-s + 0.816·14-s + 3.20·15-s + 1.01·16-s + 0.740·17-s − 5.40·18-s − 5.20·19-s + 1.45·20-s + 3.54·21-s + 4.73·22-s − 3.43·23-s − 8.19·24-s + 25-s + 0.920·26-s − 13.7·27-s + 1.60·28-s + ⋯
L(s)  = 1  − 0.523·2-s − 1.85·3-s − 0.725·4-s − 0.447·5-s + 0.969·6-s − 0.417·7-s + 0.903·8-s + 2.43·9-s + 0.234·10-s − 1.92·11-s + 1.34·12-s − 0.344·13-s + 0.218·14-s + 0.828·15-s + 0.253·16-s + 0.179·17-s − 1.27·18-s − 1.19·19-s + 0.324·20-s + 0.772·21-s + 1.00·22-s − 0.716·23-s − 1.67·24-s + 0.200·25-s + 0.180·26-s − 2.65·27-s + 0.302·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4205 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4205 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4205\)    =    \(5 \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(33.5770\)
Root analytic conductor: \(5.79457\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4205,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
29 \( 1 \)
good2 \( 1 + 0.740T + 2T^{2} \)
3 \( 1 + 3.20T + 3T^{2} \)
7 \( 1 + 1.10T + 7T^{2} \)
11 \( 1 + 6.39T + 11T^{2} \)
13 \( 1 + 1.24T + 13T^{2} \)
17 \( 1 - 0.740T + 17T^{2} \)
19 \( 1 + 5.20T + 19T^{2} \)
23 \( 1 + 3.43T + 23T^{2} \)
31 \( 1 - 8.11T + 31T^{2} \)
37 \( 1 + 0.989T + 37T^{2} \)
41 \( 1 + 7.58T + 41T^{2} \)
43 \( 1 + 1.43T + 43T^{2} \)
47 \( 1 - 3.37T + 47T^{2} \)
53 \( 1 - 12.5T + 53T^{2} \)
59 \( 1 - 5.92T + 59T^{2} \)
61 \( 1 + 8.33T + 61T^{2} \)
67 \( 1 - 1.71T + 67T^{2} \)
71 \( 1 - 9.64T + 71T^{2} \)
73 \( 1 - 7.35T + 73T^{2} \)
79 \( 1 + 7.02T + 79T^{2} \)
83 \( 1 - 13.9T + 83T^{2} \)
89 \( 1 + 1.17T + 89T^{2} \)
97 \( 1 - 10.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.978413415619279855000693467541, −7.34935597537871855798728549141, −6.51217835102824784125204529482, −5.76514147104479460287049666699, −4.96616276627459320291590483925, −4.65884195793967107756301421095, −3.65576672640191465974392188092, −2.18116577683136409356419780355, −0.69306317151370819530566048954, 0, 0.69306317151370819530566048954, 2.18116577683136409356419780355, 3.65576672640191465974392188092, 4.65884195793967107756301421095, 4.96616276627459320291590483925, 5.76514147104479460287049666699, 6.51217835102824784125204529482, 7.34935597537871855798728549141, 7.978413415619279855000693467541

Graph of the $Z$-function along the critical line