Properties

Label 2-4205-1.1-c1-0-269
Degree $2$
Conductor $4205$
Sign $-1$
Analytic cond. $33.5770$
Root an. cond. $5.79457$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.17·2-s + 2.53·3-s + 2.73·4-s − 5-s + 5.51·6-s − 4.33·7-s + 1.59·8-s + 3.42·9-s − 2.17·10-s − 5.75·11-s + 6.92·12-s − 2.80·13-s − 9.42·14-s − 2.53·15-s − 1.99·16-s − 2.17·17-s + 7.44·18-s + 4.90·19-s − 2.73·20-s − 10.9·21-s − 12.5·22-s + 2.10·23-s + 4.04·24-s + 25-s − 6.09·26-s + 1.06·27-s − 11.8·28-s + ⋯
L(s)  = 1  + 1.53·2-s + 1.46·3-s + 1.36·4-s − 0.447·5-s + 2.25·6-s − 1.63·7-s + 0.564·8-s + 1.14·9-s − 0.688·10-s − 1.73·11-s + 1.99·12-s − 0.776·13-s − 2.51·14-s − 0.654·15-s − 0.498·16-s − 0.527·17-s + 1.75·18-s + 1.12·19-s − 0.611·20-s − 2.39·21-s − 2.66·22-s + 0.439·23-s + 0.826·24-s + 0.200·25-s − 1.19·26-s + 0.205·27-s − 2.23·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4205 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4205 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4205\)    =    \(5 \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(33.5770\)
Root analytic conductor: \(5.79457\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4205,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
29 \( 1 \)
good2 \( 1 - 2.17T + 2T^{2} \)
3 \( 1 - 2.53T + 3T^{2} \)
7 \( 1 + 4.33T + 7T^{2} \)
11 \( 1 + 5.75T + 11T^{2} \)
13 \( 1 + 2.80T + 13T^{2} \)
17 \( 1 + 2.17T + 17T^{2} \)
19 \( 1 - 4.90T + 19T^{2} \)
23 \( 1 - 2.10T + 23T^{2} \)
31 \( 1 + 6.00T + 31T^{2} \)
37 \( 1 - 8.20T + 37T^{2} \)
41 \( 1 + 4.97T + 41T^{2} \)
43 \( 1 + 10.2T + 43T^{2} \)
47 \( 1 - 2.14T + 47T^{2} \)
53 \( 1 - 7.83T + 53T^{2} \)
59 \( 1 + 0.841T + 59T^{2} \)
61 \( 1 - 5.02T + 61T^{2} \)
67 \( 1 + 7.38T + 67T^{2} \)
71 \( 1 + 3.53T + 71T^{2} \)
73 \( 1 - 9.13T + 73T^{2} \)
79 \( 1 - 4.58T + 79T^{2} \)
83 \( 1 - 6.13T + 83T^{2} \)
89 \( 1 - 7.28T + 89T^{2} \)
97 \( 1 + 8.86T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80665360375075774142246551920, −7.25825407227941458230968841298, −6.61834771298350299945511309191, −5.55933320246981021990080105849, −4.98320858796159843332052016136, −3.96293450285986678393070342984, −3.31455027321194558253836793753, −2.83194943197546193211809903873, −2.31126936739112584814232903178, 0, 2.31126936739112584814232903178, 2.83194943197546193211809903873, 3.31455027321194558253836793753, 3.96293450285986678393070342984, 4.98320858796159843332052016136, 5.55933320246981021990080105849, 6.61834771298350299945511309191, 7.25825407227941458230968841298, 7.80665360375075774142246551920

Graph of the $Z$-function along the critical line