Properties

Label 2-4205-1.1-c1-0-225
Degree $2$
Conductor $4205$
Sign $1$
Analytic cond. $33.5770$
Root an. cond. $5.79457$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.41·2-s + 2·3-s + 3.82·4-s + 5-s + 4.82·6-s + 0.828·7-s + 4.41·8-s + 9-s + 2.41·10-s + 4.82·11-s + 7.65·12-s − 2·13-s + 1.99·14-s + 2·15-s + 2.99·16-s + 2.82·17-s + 2.41·18-s − 0.828·19-s + 3.82·20-s + 1.65·21-s + 11.6·22-s − 8.82·23-s + 8.82·24-s + 25-s − 4.82·26-s − 4·27-s + 3.17·28-s + ⋯
L(s)  = 1  + 1.70·2-s + 1.15·3-s + 1.91·4-s + 0.447·5-s + 1.97·6-s + 0.313·7-s + 1.56·8-s + 0.333·9-s + 0.763·10-s + 1.45·11-s + 2.21·12-s − 0.554·13-s + 0.534·14-s + 0.516·15-s + 0.749·16-s + 0.685·17-s + 0.569·18-s − 0.190·19-s + 0.856·20-s + 0.361·21-s + 2.48·22-s − 1.84·23-s + 1.80·24-s + 0.200·25-s − 0.946·26-s − 0.769·27-s + 0.599·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4205 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4205 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4205\)    =    \(5 \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(33.5770\)
Root analytic conductor: \(5.79457\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4205,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(9.335969482\)
\(L(\frac12)\) \(\approx\) \(9.335969482\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
29 \( 1 \)
good2 \( 1 - 2.41T + 2T^{2} \)
3 \( 1 - 2T + 3T^{2} \)
7 \( 1 - 0.828T + 7T^{2} \)
11 \( 1 - 4.82T + 11T^{2} \)
13 \( 1 + 2T + 13T^{2} \)
17 \( 1 - 2.82T + 17T^{2} \)
19 \( 1 + 0.828T + 19T^{2} \)
23 \( 1 + 8.82T + 23T^{2} \)
31 \( 1 - 10.4T + 31T^{2} \)
37 \( 1 + 8.48T + 37T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 - 6T + 43T^{2} \)
47 \( 1 - 0.343T + 47T^{2} \)
53 \( 1 - 7.65T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 7.65T + 61T^{2} \)
67 \( 1 + 10.4T + 67T^{2} \)
71 \( 1 - 7.31T + 71T^{2} \)
73 \( 1 - 8.48T + 73T^{2} \)
79 \( 1 + 14.4T + 79T^{2} \)
83 \( 1 - 12.8T + 83T^{2} \)
89 \( 1 + 3.65T + 89T^{2} \)
97 \( 1 + 4.48T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.260980620920110319356907627697, −7.58968622228679854777188072722, −6.67715121169553801188843580131, −6.09378163345246889138794663444, −5.37874439054670968513073398139, −4.34944282207797482252890903747, −3.93601496109771530976076844967, −3.06977202321369680576306139710, −2.35046230384966630088696939815, −1.55606444348503665145752333763, 1.55606444348503665145752333763, 2.35046230384966630088696939815, 3.06977202321369680576306139710, 3.93601496109771530976076844967, 4.34944282207797482252890903747, 5.37874439054670968513073398139, 6.09378163345246889138794663444, 6.67715121169553801188843580131, 7.58968622228679854777188072722, 8.260980620920110319356907627697

Graph of the $Z$-function along the critical line