Properties

Label 2-4205-1.1-c1-0-121
Degree $2$
Conductor $4205$
Sign $-1$
Analytic cond. $33.5770$
Root an. cond. $5.79457$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.916·2-s − 0.984·3-s − 1.15·4-s + 5-s + 0.902·6-s − 4.70·7-s + 2.89·8-s − 2.03·9-s − 0.916·10-s + 6.16·11-s + 1.14·12-s − 0.271·13-s + 4.30·14-s − 0.984·15-s − 0.334·16-s − 4.97·17-s + 1.86·18-s − 3.14·19-s − 1.15·20-s + 4.63·21-s − 5.64·22-s + 5.36·23-s − 2.85·24-s + 25-s + 0.248·26-s + 4.95·27-s + 5.45·28-s + ⋯
L(s)  = 1  − 0.648·2-s − 0.568·3-s − 0.579·4-s + 0.447·5-s + 0.368·6-s − 1.77·7-s + 1.02·8-s − 0.676·9-s − 0.289·10-s + 1.85·11-s + 0.329·12-s − 0.0753·13-s + 1.15·14-s − 0.254·15-s − 0.0837·16-s − 1.20·17-s + 0.438·18-s − 0.721·19-s − 0.259·20-s + 1.01·21-s − 1.20·22-s + 1.11·23-s − 0.582·24-s + 0.200·25-s + 0.0488·26-s + 0.953·27-s + 1.03·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4205 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4205 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4205\)    =    \(5 \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(33.5770\)
Root analytic conductor: \(5.79457\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4205,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
29 \( 1 \)
good2 \( 1 + 0.916T + 2T^{2} \)
3 \( 1 + 0.984T + 3T^{2} \)
7 \( 1 + 4.70T + 7T^{2} \)
11 \( 1 - 6.16T + 11T^{2} \)
13 \( 1 + 0.271T + 13T^{2} \)
17 \( 1 + 4.97T + 17T^{2} \)
19 \( 1 + 3.14T + 19T^{2} \)
23 \( 1 - 5.36T + 23T^{2} \)
31 \( 1 + 4.18T + 31T^{2} \)
37 \( 1 + 4.84T + 37T^{2} \)
41 \( 1 - 6.29T + 41T^{2} \)
43 \( 1 - 0.802T + 43T^{2} \)
47 \( 1 - 2.95T + 47T^{2} \)
53 \( 1 + 7.49T + 53T^{2} \)
59 \( 1 + 0.0479T + 59T^{2} \)
61 \( 1 - 9.95T + 61T^{2} \)
67 \( 1 - 12.0T + 67T^{2} \)
71 \( 1 - 15.5T + 71T^{2} \)
73 \( 1 - 7.49T + 73T^{2} \)
79 \( 1 + 10.5T + 79T^{2} \)
83 \( 1 + 3.52T + 83T^{2} \)
89 \( 1 - 6.23T + 89T^{2} \)
97 \( 1 + 3.12T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.387038492631470896755688444090, −6.91685026126426154644718782164, −6.72833698267458773520430667632, −6.01447943798702991520379390034, −5.16308441180794722747405307894, −4.14237410165003958465925804042, −3.51289125750523096720494189166, −2.33872865664446497317407008106, −0.989604762083926878963878330623, 0, 0.989604762083926878963878330623, 2.33872865664446497317407008106, 3.51289125750523096720494189166, 4.14237410165003958465925804042, 5.16308441180794722747405307894, 6.01447943798702991520379390034, 6.72833698267458773520430667632, 6.91685026126426154644718782164, 8.387038492631470896755688444090

Graph of the $Z$-function along the critical line