Properties

Label 2-42-1.1-c11-0-9
Degree $2$
Conductor $42$
Sign $-1$
Analytic cond. $32.2704$
Root an. cond. $5.68070$
Motivic weight $11$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 32·2-s + 243·3-s + 1.02e3·4-s − 1.18e4·5-s + 7.77e3·6-s + 1.68e4·7-s + 3.27e4·8-s + 5.90e4·9-s − 3.80e5·10-s + 7.27e5·11-s + 2.48e5·12-s − 1.89e6·13-s + 5.37e5·14-s − 2.88e6·15-s + 1.04e6·16-s − 1.02e7·17-s + 1.88e6·18-s − 1.27e7·19-s − 1.21e7·20-s + 4.08e6·21-s + 2.32e7·22-s − 2.74e7·23-s + 7.96e6·24-s + 9.23e7·25-s − 6.06e7·26-s + 1.43e7·27-s + 1.72e7·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 1.70·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s − 1.20·10-s + 1.36·11-s + 0.288·12-s − 1.41·13-s + 0.267·14-s − 0.981·15-s + 1/4·16-s − 1.74·17-s + 0.235·18-s − 1.18·19-s − 0.850·20-s + 0.218·21-s + 0.962·22-s − 0.888·23-s + 0.204·24-s + 1.89·25-s − 1.00·26-s + 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 42 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 42 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(42\)    =    \(2 \cdot 3 \cdot 7\)
Sign: $-1$
Analytic conductor: \(32.2704\)
Root analytic conductor: \(5.68070\)
Motivic weight: \(11\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 42,\ (\ :11/2),\ -1)\)

Particular Values

\(L(6)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{5} T \)
3 \( 1 - p^{5} T \)
7 \( 1 - p^{5} T \)
good5 \( 1 + 2376 p T + p^{11} T^{2} \)
11 \( 1 - 727110 T + p^{11} T^{2} \)
13 \( 1 + 1895734 T + p^{11} T^{2} \)
17 \( 1 + 10233912 T + p^{11} T^{2} \)
19 \( 1 + 12792796 T + p^{11} T^{2} \)
23 \( 1 + 27412290 T + p^{11} T^{2} \)
29 \( 1 + 108082914 T + p^{11} T^{2} \)
31 \( 1 + 202243384 T + p^{11} T^{2} \)
37 \( 1 - 412454954 T + p^{11} T^{2} \)
41 \( 1 + 245108604 T + p^{11} T^{2} \)
43 \( 1 - 509839844 T + p^{11} T^{2} \)
47 \( 1 - 699876996 T + p^{11} T^{2} \)
53 \( 1 + 4836690462 T + p^{11} T^{2} \)
59 \( 1 - 2462248272 T + p^{11} T^{2} \)
61 \( 1 - 9054716702 T + p^{11} T^{2} \)
67 \( 1 + 2923148584 T + p^{11} T^{2} \)
71 \( 1 + 11268869310 T + p^{11} T^{2} \)
73 \( 1 - 2809231382 T + p^{11} T^{2} \)
79 \( 1 - 25573574516 T + p^{11} T^{2} \)
83 \( 1 + 38718767364 T + p^{11} T^{2} \)
89 \( 1 - 90783707844 T + p^{11} T^{2} \)
97 \( 1 - 130559880038 T + p^{11} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.89105944608494566863606099144, −11.89420202794563870934809013727, −11.03381367252348981336070874982, −9.060028542786688813559978259033, −7.79395657700024210084483133987, −6.77294364027559558614336647064, −4.48380901071728712430225115209, −3.86526905058444319357505602261, −2.14694460629424843299506192267, 0, 2.14694460629424843299506192267, 3.86526905058444319357505602261, 4.48380901071728712430225115209, 6.77294364027559558614336647064, 7.79395657700024210084483133987, 9.060028542786688813559978259033, 11.03381367252348981336070874982, 11.89420202794563870934809013727, 12.89105944608494566863606099144

Graph of the $Z$-function along the critical line