Properties

Label 2-42-1.1-c11-0-4
Degree $2$
Conductor $42$
Sign $1$
Analytic cond. $32.2704$
Root an. cond. $5.68070$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 32·2-s − 243·3-s + 1.02e3·4-s + 1.23e4·5-s − 7.77e3·6-s + 1.68e4·7-s + 3.27e4·8-s + 5.90e4·9-s + 3.93e5·10-s − 3.52e5·11-s − 2.48e5·12-s + 1.58e6·13-s + 5.37e5·14-s − 2.98e6·15-s + 1.04e6·16-s − 2.48e6·17-s + 1.88e6·18-s − 1.61e7·19-s + 1.25e7·20-s − 4.08e6·21-s − 1.12e7·22-s + 4.52e7·23-s − 7.96e6·24-s + 1.02e8·25-s + 5.05e7·26-s − 1.43e7·27-s + 1.72e7·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s + 1.76·5-s − 0.408·6-s + 0.377·7-s + 0.353·8-s + 0.333·9-s + 1.24·10-s − 0.660·11-s − 0.288·12-s + 1.18·13-s + 0.267·14-s − 1.01·15-s + 0.250·16-s − 0.425·17-s + 0.235·18-s − 1.49·19-s + 0.880·20-s − 0.218·21-s − 0.466·22-s + 1.46·23-s − 0.204·24-s + 2.09·25-s + 0.834·26-s − 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 42 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 42 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(42\)    =    \(2 \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(32.2704\)
Root analytic conductor: \(5.68070\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 42,\ (\ :11/2),\ 1)\)

Particular Values

\(L(6)\) \(\approx\) \(3.848655353\)
\(L(\frac12)\) \(\approx\) \(3.848655353\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 32T \)
3 \( 1 + 243T \)
7 \( 1 - 1.68e4T \)
good5 \( 1 - 1.23e4T + 4.88e7T^{2} \)
11 \( 1 + 3.52e5T + 2.85e11T^{2} \)
13 \( 1 - 1.58e6T + 1.79e12T^{2} \)
17 \( 1 + 2.48e6T + 3.42e13T^{2} \)
19 \( 1 + 1.61e7T + 1.16e14T^{2} \)
23 \( 1 - 4.52e7T + 9.52e14T^{2} \)
29 \( 1 - 1.70e8T + 1.22e16T^{2} \)
31 \( 1 + 1.42e7T + 2.54e16T^{2} \)
37 \( 1 - 1.89e8T + 1.77e17T^{2} \)
41 \( 1 - 2.36e8T + 5.50e17T^{2} \)
43 \( 1 + 2.90e8T + 9.29e17T^{2} \)
47 \( 1 - 2.17e9T + 2.47e18T^{2} \)
53 \( 1 + 6.05e9T + 9.26e18T^{2} \)
59 \( 1 - 3.82e9T + 3.01e19T^{2} \)
61 \( 1 - 1.02e10T + 4.35e19T^{2} \)
67 \( 1 + 1.64e10T + 1.22e20T^{2} \)
71 \( 1 - 6.23e9T + 2.31e20T^{2} \)
73 \( 1 + 1.55e10T + 3.13e20T^{2} \)
79 \( 1 + 3.48e10T + 7.47e20T^{2} \)
83 \( 1 + 4.20e10T + 1.28e21T^{2} \)
89 \( 1 - 2.22e10T + 2.77e21T^{2} \)
97 \( 1 - 8.88e10T + 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.39182727332886704911545079992, −12.81998979725578971442621519433, −11.06203687288084931414208563302, −10.33100625695939919295291250616, −8.735837472892578776949479334125, −6.64088832035783316296017083533, −5.79837116350532784342635439682, −4.67360540396806892900630579014, −2.55330289628493633068920698053, −1.27729046993793957084610737905, 1.27729046993793957084610737905, 2.55330289628493633068920698053, 4.67360540396806892900630579014, 5.79837116350532784342635439682, 6.64088832035783316296017083533, 8.735837472892578776949479334125, 10.33100625695939919295291250616, 11.06203687288084931414208563302, 12.81998979725578971442621519433, 13.39182727332886704911545079992

Graph of the $Z$-function along the critical line