Properties

Label 2-42-1.1-c11-0-1
Degree $2$
Conductor $42$
Sign $1$
Analytic cond. $32.2704$
Root an. cond. $5.68070$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 32·2-s − 243·3-s + 1.02e3·4-s − 1.33e4·5-s − 7.77e3·6-s + 1.68e4·7-s + 3.27e4·8-s + 5.90e4·9-s − 4.26e5·10-s − 9.42e5·11-s − 2.48e5·12-s + 9.64e5·13-s + 5.37e5·14-s + 3.23e6·15-s + 1.04e6·16-s + 4.71e6·17-s + 1.88e6·18-s + 1.13e7·19-s − 1.36e7·20-s − 4.08e6·21-s − 3.01e7·22-s − 8.11e6·23-s − 7.96e6·24-s + 1.28e8·25-s + 3.08e7·26-s − 1.43e7·27-s + 1.72e7·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s − 1.90·5-s − 0.408·6-s + 0.377·7-s + 0.353·8-s + 0.333·9-s − 1.34·10-s − 1.76·11-s − 0.288·12-s + 0.720·13-s + 0.267·14-s + 1.10·15-s + 0.250·16-s + 0.805·17-s + 0.235·18-s + 1.05·19-s − 0.953·20-s − 0.218·21-s − 1.24·22-s − 0.262·23-s − 0.204·24-s + 2.64·25-s + 0.509·26-s − 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 42 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 42 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(42\)    =    \(2 \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(32.2704\)
Root analytic conductor: \(5.68070\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 42,\ (\ :11/2),\ 1)\)

Particular Values

\(L(6)\) \(\approx\) \(1.580454315\)
\(L(\frac12)\) \(\approx\) \(1.580454315\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 32T \)
3 \( 1 + 243T \)
7 \( 1 - 1.68e4T \)
good5 \( 1 + 1.33e4T + 4.88e7T^{2} \)
11 \( 1 + 9.42e5T + 2.85e11T^{2} \)
13 \( 1 - 9.64e5T + 1.79e12T^{2} \)
17 \( 1 - 4.71e6T + 3.42e13T^{2} \)
19 \( 1 - 1.13e7T + 1.16e14T^{2} \)
23 \( 1 + 8.11e6T + 9.52e14T^{2} \)
29 \( 1 + 1.19e8T + 1.22e16T^{2} \)
31 \( 1 - 2.54e8T + 2.54e16T^{2} \)
37 \( 1 - 2.92e8T + 1.77e17T^{2} \)
41 \( 1 - 5.90e8T + 5.50e17T^{2} \)
43 \( 1 + 1.12e9T + 9.29e17T^{2} \)
47 \( 1 - 2.37e9T + 2.47e18T^{2} \)
53 \( 1 - 1.35e9T + 9.26e18T^{2} \)
59 \( 1 - 8.14e9T + 3.01e19T^{2} \)
61 \( 1 + 9.13e9T + 4.35e19T^{2} \)
67 \( 1 + 4.54e9T + 1.22e20T^{2} \)
71 \( 1 + 1.62e10T + 2.31e20T^{2} \)
73 \( 1 + 1.46e10T + 3.13e20T^{2} \)
79 \( 1 - 2.98e10T + 7.47e20T^{2} \)
83 \( 1 - 2.00e9T + 1.28e21T^{2} \)
89 \( 1 - 2.27e10T + 2.77e21T^{2} \)
97 \( 1 + 4.69e10T + 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.40734289232772684124176962926, −12.21482080706868672842662423546, −11.45880397729062703342714201585, −10.51308975459225151848795165731, −8.083003077155108791338590858507, −7.40263381165934319913336191468, −5.52430661167136659613633580051, −4.36766268480360872213445505491, −3.09790766125587242941847261120, −0.71862013697632364180930231677, 0.71862013697632364180930231677, 3.09790766125587242941847261120, 4.36766268480360872213445505491, 5.52430661167136659613633580051, 7.40263381165934319913336191468, 8.083003077155108791338590858507, 10.51308975459225151848795165731, 11.45880397729062703342714201585, 12.21482080706868672842662423546, 13.40734289232772684124176962926

Graph of the $Z$-function along the critical line