L(s) = 1 | + (−1.41 − 0.0764i)2-s + (2.23 + 0.925i)3-s + (1.98 + 0.215i)4-s + (0.344 − 0.832i)5-s + (−3.08 − 1.47i)6-s + 1.15i·7-s + (−2.79 − 0.456i)8-s + (2.01 + 2.01i)9-s + (−0.550 + 1.14i)10-s + (0.739 + 0.306i)11-s + (4.24 + 2.32i)12-s + (2.43 + 2.66i)13-s + (0.0881 − 1.62i)14-s + (1.54 − 1.54i)15-s + (3.90 + 0.858i)16-s + 2.50·17-s + ⋯ |
L(s) = 1 | + (−0.998 − 0.0540i)2-s + (1.29 + 0.534i)3-s + (0.994 + 0.107i)4-s + (0.154 − 0.372i)5-s + (−1.25 − 0.603i)6-s + 0.436i·7-s + (−0.986 − 0.161i)8-s + (0.672 + 0.672i)9-s + (−0.174 + 0.363i)10-s + (0.223 + 0.0923i)11-s + (1.22 + 0.670i)12-s + (0.674 + 0.738i)13-s + (0.0235 − 0.435i)14-s + (0.398 − 0.398i)15-s + (0.976 + 0.214i)16-s + 0.608·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.843 - 0.537i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.843 - 0.537i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.38484 + 0.403970i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.38484 + 0.403970i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.41 + 0.0764i)T \) |
| 13 | \( 1 + (-2.43 - 2.66i)T \) |
good | 3 | \( 1 + (-2.23 - 0.925i)T + (2.12 + 2.12i)T^{2} \) |
| 5 | \( 1 + (-0.344 + 0.832i)T + (-3.53 - 3.53i)T^{2} \) |
| 7 | \( 1 - 1.15iT - 7T^{2} \) |
| 11 | \( 1 + (-0.739 - 0.306i)T + (7.77 + 7.77i)T^{2} \) |
| 17 | \( 1 - 2.50T + 17T^{2} \) |
| 19 | \( 1 + (-0.0724 - 0.174i)T + (-13.4 + 13.4i)T^{2} \) |
| 23 | \( 1 + (2.04 + 2.04i)T + 23iT^{2} \) |
| 29 | \( 1 + (-0.0118 + 0.0286i)T + (-20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (1.77 + 1.77i)T + 31iT^{2} \) |
| 37 | \( 1 + (6.94 + 2.87i)T + (26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 - 3.61T + 41T^{2} \) |
| 43 | \( 1 + (-2.96 - 7.16i)T + (-30.4 + 30.4i)T^{2} \) |
| 47 | \( 1 + (4.85 + 4.85i)T + 47iT^{2} \) |
| 53 | \( 1 + (0.104 + 0.252i)T + (-37.4 + 37.4i)T^{2} \) |
| 59 | \( 1 + (-2.43 + 5.87i)T + (-41.7 - 41.7i)T^{2} \) |
| 61 | \( 1 + (-0.846 + 2.04i)T + (-43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 + (5.88 - 2.43i)T + (47.3 - 47.3i)T^{2} \) |
| 71 | \( 1 + 1.39T + 71T^{2} \) |
| 73 | \( 1 - 0.899iT - 73T^{2} \) |
| 79 | \( 1 + 13.2T + 79T^{2} \) |
| 83 | \( 1 + (-2.03 - 4.91i)T + (-58.6 + 58.6i)T^{2} \) |
| 89 | \( 1 + 16.4T + 89T^{2} \) |
| 97 | \( 1 + (-5.50 + 5.50i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.06098903600795722765893939465, −10.00709601022633194921184773581, −9.286119030705264446838942514251, −8.743673526176044349905954879870, −8.051543455928785973505765619513, −6.92467690021518798310173868276, −5.68960182627826131900352753535, −4.03895844981956036933198987030, −2.93633937765982102462812193849, −1.70342412002524526777304122515,
1.34269039740878937388025193794, 2.69009417942270843168434254420, 3.59675528952338096093944233281, 5.74729017460811676305622672239, 6.90070552250154846257954613369, 7.62023878936095320831219871729, 8.403733178347679350882493053255, 9.079468971185922194615789250832, 10.14839925616449481012838609240, 10.76907528554740042533475026299