L(s) = 1 | + (1.45 − 2.51i)3-s − 2i·5-s + (0.675 − 0.389i)7-s + (−2.73 − 4.73i)9-s + (4.36 + 2.51i)11-s + (−1 + 3.46i)13-s + (−5.03 − 2.90i)15-s + (−3.23 − 5.59i)17-s + (0.675 − 0.389i)19-s − 2.26i·21-s + (−3.58 + 6.20i)23-s + 25-s − 7.16·27-s + (−1.5 + 2.59i)29-s + 1.55i·31-s + ⋯ |
L(s) = 1 | + (0.839 − 1.45i)3-s − 0.894i·5-s + (0.255 − 0.147i)7-s + (−0.910 − 1.57i)9-s + (1.31 + 0.759i)11-s + (−0.277 + 0.960i)13-s + (−1.30 − 0.751i)15-s + (−0.783 − 1.35i)17-s + (0.154 − 0.0894i)19-s − 0.494i·21-s + (−0.747 + 1.29i)23-s + 0.200·25-s − 1.37·27-s + (−0.278 + 0.482i)29-s + 0.280i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.265 + 0.964i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.265 + 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.11474 - 1.46244i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.11474 - 1.46244i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (1 - 3.46i)T \) |
good | 3 | \( 1 + (-1.45 + 2.51i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + 2iT - 5T^{2} \) |
| 7 | \( 1 + (-0.675 + 0.389i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-4.36 - 2.51i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (3.23 + 5.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.675 + 0.389i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.58 - 6.20i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.5 - 2.59i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 1.55iT - 31T^{2} \) |
| 37 | \( 1 + (3.69 + 2.13i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (2.76 + 1.59i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.36 - 7.55i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 7.37iT - 47T^{2} \) |
| 53 | \( 1 - 9.46T + 53T^{2} \) |
| 59 | \( 1 + (-10.7 + 6.20i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.5 + 2.59i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.675 + 0.389i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-13.0 + 7.55i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 6iT - 73T^{2} \) |
| 79 | \( 1 - 10.0T + 79T^{2} \) |
| 83 | \( 1 - 10.0iT - 83T^{2} \) |
| 89 | \( 1 + (7.96 + 4.59i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (8.89 - 5.13i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.41573353292577166211613175843, −9.435518668552200857355012294545, −9.165183020454601541233588590107, −8.160718122916270441875863541282, −7.11394792244856301572318502555, −6.72369427495300349500842348114, −5.09192932667874622684434748665, −3.87742847627620100571773913165, −2.19619225988201727065988138706, −1.25549760220754058442435390340,
2.46052767009696544430867724731, 3.57978343572820033313778666103, 4.25286770059819553037975205816, 5.67672346210766118670216921156, 6.73629759756520469468812598849, 8.262306326487126236312740801790, 8.683724067135507555557968766374, 9.779135736361888305910173115929, 10.53683893021585835607344477068, 11.03705323814994831204979774996