| L(s) = 1 | + (0.599 + 1.03i)3-s + 1.56·5-s + (1.53 − 2.66i)7-s + (0.780 − 1.35i)9-s + (−2.73 − 4.73i)11-s + (3.34 + 1.35i)13-s + (0.936 + 1.62i)15-s + (1.06 − 1.83i)17-s + (−3.67 + 6.35i)19-s + 3.68·21-s + (1.79 + 3.11i)23-s − 2.56·25-s + 5.47·27-s + (2.5 + 4.33i)29-s − 6.67·31-s + ⋯ |
| L(s) = 1 | + (0.346 + 0.599i)3-s + 0.698·5-s + (0.580 − 1.00i)7-s + (0.260 − 0.450i)9-s + (−0.824 − 1.42i)11-s + (0.926 + 0.375i)13-s + (0.241 + 0.418i)15-s + (0.257 − 0.445i)17-s + (−0.842 + 1.45i)19-s + 0.804·21-s + (0.375 + 0.649i)23-s − 0.512·25-s + 1.05·27-s + (0.464 + 0.804i)29-s − 1.19·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 + 0.116i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.993 + 0.116i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.80336 - 0.104951i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.80336 - 0.104951i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 13 | \( 1 + (-3.34 - 1.35i)T \) |
| good | 3 | \( 1 + (-0.599 - 1.03i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - 1.56T + 5T^{2} \) |
| 7 | \( 1 + (-1.53 + 2.66i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.73 + 4.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.06 + 1.83i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.67 - 6.35i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.79 - 3.11i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.5 - 4.33i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 6.67T + 31T^{2} \) |
| 37 | \( 1 + (-3.06 - 5.30i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (2.06 + 3.57i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.336 + 0.583i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 0.525T + 47T^{2} \) |
| 53 | \( 1 - 1.56T + 53T^{2} \) |
| 59 | \( 1 + (5.13 - 8.89i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.62 - 4.54i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.47 + 4.28i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-3.67 + 6.35i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 16.6T + 73T^{2} \) |
| 79 | \( 1 - 15.7T + 79T^{2} \) |
| 83 | \( 1 - 8.54T + 83T^{2} \) |
| 89 | \( 1 + (-0.842 - 1.45i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (5.40 - 9.35i)T + (-48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.72833156119298176571505671884, −10.53696606507583770699863216908, −9.393880952901912407239673180502, −8.553128955743241909124126323729, −7.64666424807685433172425869992, −6.34559881117562148553591268039, −5.44313348125259165748857446268, −4.10461914382757405090503890863, −3.27440240414119681047159960488, −1.37853139296822822563482489152,
1.88801661508749921013684767836, 2.51573433466867128932413780597, 4.55165130598770223806425384934, 5.46490284142844472566588320409, 6.55747016909679500672543117618, 7.64307195770352831188042693498, 8.406585032564876468205785615369, 9.313721966537304198844016705439, 10.37159971198266096263764138229, 11.13005317468900341295673218474