| L(s) = 1 | − 2.46·5-s + (1.5 − 2.59i)9-s + (0.232 − 3.59i)13-s + (3.96 − 6.86i)17-s + 1.07·25-s + (−4.23 − 7.33i)29-s + (4.69 + 8.13i)37-s + (−0.964 − 1.66i)41-s + (−3.69 + 6.40i)45-s + (3.5 + 6.06i)49-s − 10.4·53-s + (2.69 − 4.66i)61-s + (−0.571 + 8.86i)65-s + 16.8·73-s + (−4.5 − 7.79i)81-s + ⋯ |
| L(s) = 1 | − 1.10·5-s + (0.5 − 0.866i)9-s + (0.0643 − 0.997i)13-s + (0.961 − 1.66i)17-s + 0.214·25-s + (−0.785 − 1.36i)29-s + (0.772 + 1.33i)37-s + (−0.150 − 0.260i)41-s + (−0.550 + 0.954i)45-s + (0.5 + 0.866i)49-s − 1.43·53-s + (0.345 − 0.597i)61-s + (−0.0709 + 1.09i)65-s + 1.97·73-s + (−0.5 − 0.866i)81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.202 + 0.979i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.202 + 0.979i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.795764 - 0.648116i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.795764 - 0.648116i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 13 | \( 1 + (-0.232 + 3.59i)T \) |
| good | 3 | \( 1 + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + 2.46T + 5T^{2} \) |
| 7 | \( 1 + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-3.96 + 6.86i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (4.23 + 7.33i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 + (-4.69 - 8.13i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.964 + 1.66i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 + 10.4T + 53T^{2} \) |
| 59 | \( 1 + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.69 + 4.66i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 16.8T + 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (5 + 8.66i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (9 - 15.5i)T + (-48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.23358154645737432795751354783, −9.987957045803917386790591564137, −9.337112767649430387900379335932, −7.975445093240735173481378788063, −7.53790765312086117280878972105, −6.36346122064774768861193478682, −5.11063934362423115047210656723, −3.94482325744288031830849481082, −2.99872450239467610938363441290, −0.70193976957818435534057543417,
1.76216394319035606246726551869, 3.59302494709322558959505063756, 4.37047038976356805569766688107, 5.62213449270403166404704212725, 6.93822264004032859652818746512, 7.76117247492538438037530362028, 8.470873242182541545297031238478, 9.635914733686147124706346125353, 10.70706909143103643754701434867, 11.28351126672163938106742399776