L(s) = 1 | − 3·3-s − 3i·5-s + i·7-s + 6·9-s − 4i·11-s + (−2 + 3i)13-s + 9i·15-s − 5·17-s + 6i·19-s − 3i·21-s − 6·23-s − 4·25-s − 9·27-s − 4·29-s + 12i·33-s + ⋯ |
L(s) = 1 | − 1.73·3-s − 1.34i·5-s + 0.377i·7-s + 2·9-s − 1.20i·11-s + (−0.554 + 0.832i)13-s + 2.32i·15-s − 1.21·17-s + 1.37i·19-s − 0.654i·21-s − 1.25·23-s − 0.800·25-s − 1.73·27-s − 0.742·29-s + 2.08i·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.832 - 0.554i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.832 - 0.554i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (2 - 3i)T \) |
good | 3 | \( 1 + 3T + 3T^{2} \) |
| 5 | \( 1 + 3iT - 5T^{2} \) |
| 7 | \( 1 - iT - 7T^{2} \) |
| 11 | \( 1 + 4iT - 11T^{2} \) |
| 17 | \( 1 + 5T + 17T^{2} \) |
| 19 | \( 1 - 6iT - 19T^{2} \) |
| 23 | \( 1 + 6T + 23T^{2} \) |
| 29 | \( 1 + 4T + 29T^{2} \) |
| 31 | \( 1 - 31T^{2} \) |
| 37 | \( 1 - 3iT - 37T^{2} \) |
| 41 | \( 1 - 12iT - 41T^{2} \) |
| 43 | \( 1 + 3T + 43T^{2} \) |
| 47 | \( 1 + 7iT - 47T^{2} \) |
| 53 | \( 1 + 2T + 53T^{2} \) |
| 59 | \( 1 - 2iT - 59T^{2} \) |
| 61 | \( 1 + 12T + 61T^{2} \) |
| 67 | \( 1 - 4iT - 67T^{2} \) |
| 71 | \( 1 + 11iT - 71T^{2} \) |
| 73 | \( 1 + 6iT - 73T^{2} \) |
| 79 | \( 1 - 6T + 79T^{2} \) |
| 83 | \( 1 - 10iT - 83T^{2} \) |
| 89 | \( 1 + 6iT - 89T^{2} \) |
| 97 | \( 1 - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.90058415489492309293663788560, −9.867705803055531930194665540861, −8.924066083756116351624652023821, −7.944595749674271891760273873132, −6.47010685473241215068343474096, −5.83759866425758622327451266892, −4.96700719456017829763534961263, −4.11737137647606119361774060872, −1.58958060048972467946282313599, 0,
2.31848070166838050919277286340, 4.12187527325456957596345917235, 5.10019492592589482081221636138, 6.20214531995203480907610222723, 7.00599394138295271063141268226, 7.46646046416840431551234300796, 9.428483445700316367073144700927, 10.45065652592070170228992426050, 10.72301841796029202465661168657