L(s) = 1 | + (1.45 + 2.51i)3-s + 2i·5-s + (0.675 + 0.389i)7-s + (−2.73 + 4.73i)9-s + (4.36 − 2.51i)11-s + (−1 − 3.46i)13-s + (−5.03 + 2.90i)15-s + (−3.23 + 5.59i)17-s + (0.675 + 0.389i)19-s + 2.26i·21-s + (−3.58 − 6.20i)23-s + 25-s − 7.16·27-s + (−1.5 − 2.59i)29-s − 1.55i·31-s + ⋯ |
L(s) = 1 | + (0.839 + 1.45i)3-s + 0.894i·5-s + (0.255 + 0.147i)7-s + (−0.910 + 1.57i)9-s + (1.31 − 0.759i)11-s + (−0.277 − 0.960i)13-s + (−1.30 + 0.751i)15-s + (−0.783 + 1.35i)17-s + (0.154 + 0.0894i)19-s + 0.494i·21-s + (−0.747 − 1.29i)23-s + 0.200·25-s − 1.37·27-s + (−0.278 − 0.482i)29-s − 0.280i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.265 - 0.964i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.265 - 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.11474 + 1.46244i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.11474 + 1.46244i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (1 + 3.46i)T \) |
good | 3 | \( 1 + (-1.45 - 2.51i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - 2iT - 5T^{2} \) |
| 7 | \( 1 + (-0.675 - 0.389i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-4.36 + 2.51i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (3.23 - 5.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.675 - 0.389i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3.58 + 6.20i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.5 + 2.59i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 1.55iT - 31T^{2} \) |
| 37 | \( 1 + (3.69 - 2.13i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (2.76 - 1.59i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.36 + 7.55i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 7.37iT - 47T^{2} \) |
| 53 | \( 1 - 9.46T + 53T^{2} \) |
| 59 | \( 1 + (-10.7 - 6.20i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.5 - 2.59i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.675 - 0.389i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-13.0 - 7.55i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 6iT - 73T^{2} \) |
| 79 | \( 1 - 10.0T + 79T^{2} \) |
| 83 | \( 1 + 10.0iT - 83T^{2} \) |
| 89 | \( 1 + (7.96 - 4.59i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (8.89 + 5.13i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.03705323814994831204979774996, −10.53683893021585835607344477068, −9.779135736361888305910173115929, −8.683724067135507555557968766374, −8.262306326487126236312740801790, −6.73629759756520469468812598849, −5.67672346210766118670216921156, −4.25286770059819553037975205816, −3.57978343572820033313778666103, −2.46052767009696544430867724731,
1.25549760220754058442435390340, 2.19619225988201727065988138706, 3.87742847627620100571773913165, 5.09192932667874622684434748665, 6.72369427495300349500842348114, 7.11394792244856301572318502555, 8.160718122916270441875863541282, 9.165183020454601541233588590107, 9.435518668552200857355012294545, 11.41573353292577166211613175843