L(s) = 1 | + (−1.45 − 2.51i)3-s + 2i·5-s + (−0.675 − 0.389i)7-s + (−2.73 + 4.73i)9-s + (−4.36 + 2.51i)11-s + (−1 − 3.46i)13-s + (5.03 − 2.90i)15-s + (−3.23 + 5.59i)17-s + (−0.675 − 0.389i)19-s + 2.26i·21-s + (3.58 + 6.20i)23-s + 25-s + 7.16·27-s + (−1.5 − 2.59i)29-s + 1.55i·31-s + ⋯ |
L(s) = 1 | + (−0.839 − 1.45i)3-s + 0.894i·5-s + (−0.255 − 0.147i)7-s + (−0.910 + 1.57i)9-s + (−1.31 + 0.759i)11-s + (−0.277 − 0.960i)13-s + (1.30 − 0.751i)15-s + (−0.783 + 1.35i)17-s + (−0.154 − 0.0894i)19-s + 0.494i·21-s + (0.747 + 1.29i)23-s + 0.200·25-s + 1.37·27-s + (−0.278 − 0.482i)29-s + 0.280i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.265 - 0.964i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.265 - 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.157136 + 0.206149i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.157136 + 0.206149i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (1 + 3.46i)T \) |
good | 3 | \( 1 + (1.45 + 2.51i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - 2iT - 5T^{2} \) |
| 7 | \( 1 + (0.675 + 0.389i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (4.36 - 2.51i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (3.23 - 5.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.675 + 0.389i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.58 - 6.20i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.5 + 2.59i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 1.55iT - 31T^{2} \) |
| 37 | \( 1 + (3.69 - 2.13i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (2.76 - 1.59i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.36 - 7.55i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 7.37iT - 47T^{2} \) |
| 53 | \( 1 - 9.46T + 53T^{2} \) |
| 59 | \( 1 + (10.7 + 6.20i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.5 - 2.59i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.675 + 0.389i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (13.0 + 7.55i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 6iT - 73T^{2} \) |
| 79 | \( 1 + 10.0T + 79T^{2} \) |
| 83 | \( 1 - 10.0iT - 83T^{2} \) |
| 89 | \( 1 + (7.96 - 4.59i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (8.89 + 5.13i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.46321580988194993273981068884, −10.69201121563015630429062472754, −10.07632827124932837620925967612, −8.335998416885782661287957616051, −7.48276437381138890873911574975, −6.89659373283095469961406483286, −5.98757657328449286404974787125, −5.03567224377668976549885540255, −3.07798037057002553839358610575, −1.85435352348229881135162626374,
0.17418240390647659509826736665, 2.88254512630175736678088960492, 4.41653676313366192729591143277, 4.95563858632604233034186623596, 5.79056184038017554328479734173, 7.06278899662444463859506268397, 8.732905147982907786291468443046, 9.080133013539860332743410912775, 10.16452329992242754253082233559, 10.87564220770913540673386553801