Properties

Label 2-416-104.77-c1-0-4
Degree $2$
Conductor $416$
Sign $0.980 + 0.196i$
Analytic cond. $3.32177$
Root an. cond. $1.82257$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s − 5-s + 3i·7-s + 2·9-s + 2·11-s + (3 − 2i)13-s + i·15-s + 3·17-s + 3·21-s + 6·23-s − 4·25-s − 5i·27-s − 6i·29-s − 2i·33-s − 3i·35-s + ⋯
L(s)  = 1  − 0.577i·3-s − 0.447·5-s + 1.13i·7-s + 0.666·9-s + 0.603·11-s + (0.832 − 0.554i)13-s + 0.258i·15-s + 0.727·17-s + 0.654·21-s + 1.25·23-s − 0.800·25-s − 0.962i·27-s − 1.11i·29-s − 0.348i·33-s − 0.507i·35-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.980 + 0.196i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.980 + 0.196i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(416\)    =    \(2^{5} \cdot 13\)
Sign: $0.980 + 0.196i$
Analytic conductor: \(3.32177\)
Root analytic conductor: \(1.82257\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{416} (337, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 416,\ (\ :1/2),\ 0.980 + 0.196i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.43781 - 0.142371i\)
\(L(\frac12)\) \(\approx\) \(1.43781 - 0.142371i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + (-3 + 2i)T \)
good3 \( 1 + iT - 3T^{2} \)
5 \( 1 + T + 5T^{2} \)
7 \( 1 - 3iT - 7T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
17 \( 1 - 3T + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 - 6T + 23T^{2} \)
29 \( 1 + 6iT - 29T^{2} \)
31 \( 1 - 31T^{2} \)
37 \( 1 + 3T + 37T^{2} \)
41 \( 1 - 10iT - 41T^{2} \)
43 \( 1 - 9iT - 43T^{2} \)
47 \( 1 + 7iT - 47T^{2} \)
53 \( 1 - 6iT - 53T^{2} \)
59 \( 1 - 10T + 59T^{2} \)
61 \( 1 - 10iT - 61T^{2} \)
67 \( 1 + 12T + 67T^{2} \)
71 \( 1 + 5iT - 71T^{2} \)
73 \( 1 + 6iT - 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + 16T + 83T^{2} \)
89 \( 1 + 4iT - 89T^{2} \)
97 \( 1 + 18iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.51934658035853730324972508152, −10.25192866628245335004599790864, −9.279794348719621932061108838309, −8.342221936283905436847609548821, −7.55506918318717107045340125087, −6.45057159331266784874117649187, −5.60103366058374838686862810103, −4.22324818397657834157527136281, −2.92416774946599500699904970660, −1.35309831046559301069422652713, 1.29470269968441608072715738381, 3.61102415332154168227078522061, 4.06480225066723033621650033340, 5.28237839942400213115685528030, 6.80857743730259293062239842643, 7.34864537020561679716376479234, 8.618797312506838930781956045142, 9.499410376287534354260725032362, 10.45332787133852351827811142108, 11.02002109623427657805421566937

Graph of the $Z$-function along the critical line