L(s) = 1 | + (−2.36 − 1.36i)3-s + 0.267·5-s + (3 − 1.73i)7-s + (2.23 + 3.86i)9-s + (−1 + 1.73i)11-s + (2.59 − 2.5i)13-s + (−0.633 − 0.366i)15-s + (−3.23 − 5.59i)17-s + (−2.36 − 4.09i)19-s − 9.46·21-s + (−1.09 + 1.90i)23-s − 4.92·25-s − 4.00i·27-s + (−2.59 − 1.5i)29-s − 1.26i·31-s + ⋯ |
L(s) = 1 | + (−1.36 − 0.788i)3-s + 0.119·5-s + (1.13 − 0.654i)7-s + (0.744 + 1.28i)9-s + (−0.301 + 0.522i)11-s + (0.720 − 0.693i)13-s + (−0.163 − 0.0945i)15-s + (−0.783 − 1.35i)17-s + (−0.542 − 0.940i)19-s − 2.06·21-s + (−0.228 + 0.396i)23-s − 0.985·25-s − 0.769i·27-s + (−0.482 − 0.278i)29-s − 0.227i·31-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(−0.505+0.862i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(−0.505+0.862i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
−0.505+0.862i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), −0.505+0.862i)
|
Particular Values
L(1) |
≈ |
0.403594−0.704249i |
L(21) |
≈ |
0.403594−0.704249i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(−2.59+2.5i)T |
good | 3 | 1+(2.36+1.36i)T+(1.5+2.59i)T2 |
| 5 | 1−0.267T+5T2 |
| 7 | 1+(−3+1.73i)T+(3.5−6.06i)T2 |
| 11 | 1+(1−1.73i)T+(−5.5−9.52i)T2 |
| 17 | 1+(3.23+5.59i)T+(−8.5+14.7i)T2 |
| 19 | 1+(2.36+4.09i)T+(−9.5+16.4i)T2 |
| 23 | 1+(1.09−1.90i)T+(−11.5−19.9i)T2 |
| 29 | 1+(2.59+1.5i)T+(14.5+25.1i)T2 |
| 31 | 1+1.26iT−31T2 |
| 37 | 1+(−3.86+6.69i)T+(−18.5−32.0i)T2 |
| 41 | 1+(1.03+0.598i)T+(20.5+35.5i)T2 |
| 43 | 1+(−8.19+4.73i)T+(21.5−37.2i)T2 |
| 47 | 1+3.26iT−47T2 |
| 53 | 1−9.92iT−53T2 |
| 59 | 1+(3.73+6.46i)T+(−29.5+51.0i)T2 |
| 61 | 1+(0.866−0.5i)T+(30.5−52.8i)T2 |
| 67 | 1+(5.36−9.29i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−11.0+6.36i)T+(35.5−61.4i)T2 |
| 73 | 1−1.73iT−73T2 |
| 79 | 1+10.3T+79T2 |
| 83 | 1−5.46T+83T2 |
| 89 | 1+(0.464+0.267i)T+(44.5+77.0i)T2 |
| 97 | 1+(−5.19+3i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.17407340771169256239112235856, −10.41642076322190731101810053257, −9.090113357227083482947640547630, −7.69293831761107812313361325677, −7.26415426831664642076149403996, −6.10118608406956304866843771671, −5.21832158275791016213990045980, −4.31347696857637564898181324335, −2.10769982087713304484664145040, −0.63450756198110514803431586676,
1.78258460462793798500784011195, 3.95260671202757555823740954948, 4.76604116671770998357560017450, 5.89520505368743859118808443388, 6.25535885327853927750557500273, 8.031710309829496504434071972468, 8.773774087989420151178556101696, 9.980674843529552834752825905088, 10.89047503317491984597382740425, 11.27085798287056992531937664673