L(s) = 1 | + (−2.36 + 1.36i)3-s + 0.267·5-s + (3 + 1.73i)7-s + (2.23 − 3.86i)9-s + (−1 − 1.73i)11-s + (2.59 + 2.5i)13-s + (−0.633 + 0.366i)15-s + (−3.23 + 5.59i)17-s + (−2.36 + 4.09i)19-s − 9.46·21-s + (−1.09 − 1.90i)23-s − 4.92·25-s + 4.00i·27-s + (−2.59 + 1.5i)29-s + 1.26i·31-s + ⋯ |
L(s) = 1 | + (−1.36 + 0.788i)3-s + 0.119·5-s + (1.13 + 0.654i)7-s + (0.744 − 1.28i)9-s + (−0.301 − 0.522i)11-s + (0.720 + 0.693i)13-s + (−0.163 + 0.0945i)15-s + (−0.783 + 1.35i)17-s + (−0.542 + 0.940i)19-s − 2.06·21-s + (−0.228 − 0.396i)23-s − 0.985·25-s + 0.769i·27-s + (−0.482 + 0.278i)29-s + 0.227i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.505 - 0.862i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.505 - 0.862i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.403594 + 0.704249i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.403594 + 0.704249i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (-2.59 - 2.5i)T \) |
good | 3 | \( 1 + (2.36 - 1.36i)T + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 - 0.267T + 5T^{2} \) |
| 7 | \( 1 + (-3 - 1.73i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1 + 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (3.23 - 5.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.36 - 4.09i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.09 + 1.90i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (2.59 - 1.5i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 1.26iT - 31T^{2} \) |
| 37 | \( 1 + (-3.86 - 6.69i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.03 - 0.598i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-8.19 - 4.73i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 3.26iT - 47T^{2} \) |
| 53 | \( 1 + 9.92iT - 53T^{2} \) |
| 59 | \( 1 + (3.73 - 6.46i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.866 + 0.5i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (5.36 + 9.29i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-11.0 - 6.36i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 1.73iT - 73T^{2} \) |
| 79 | \( 1 + 10.3T + 79T^{2} \) |
| 83 | \( 1 - 5.46T + 83T^{2} \) |
| 89 | \( 1 + (0.464 - 0.267i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.19 - 3i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.27085798287056992531937664673, −10.89047503317491984597382740425, −9.980674843529552834752825905088, −8.773774087989420151178556101696, −8.031710309829496504434071972468, −6.25535885327853927750557500273, −5.89520505368743859118808443388, −4.76604116671770998357560017450, −3.95260671202757555823740954948, −1.78258460462793798500784011195,
0.63450756198110514803431586676, 2.10769982087713304484664145040, 4.31347696857637564898181324335, 5.21832158275791016213990045980, 6.10118608406956304866843771671, 7.26415426831664642076149403996, 7.69293831761107812313361325677, 9.090113357227083482947640547630, 10.41642076322190731101810053257, 11.17407340771169256239112235856