L(s) = 1 | − 1.56·3-s − 3.56·5-s + 3.56·7-s − 0.561·9-s + 2·11-s − 13-s + 5.56·15-s + 3.56·17-s + 6·19-s − 5.56·21-s + 7.68·25-s + 5.56·27-s + 8.24·29-s − 1.12·31-s − 3.12·33-s − 12.6·35-s + 2.68·37-s + 1.56·39-s − 1.12·41-s + 11.8·43-s + 2·45-s − 10.6·47-s + 5.68·49-s − 5.56·51-s − 13.1·53-s − 7.12·55-s − 9.36·57-s + ⋯ |
L(s) = 1 | − 0.901·3-s − 1.59·5-s + 1.34·7-s − 0.187·9-s + 0.603·11-s − 0.277·13-s + 1.43·15-s + 0.863·17-s + 1.37·19-s − 1.21·21-s + 1.53·25-s + 1.07·27-s + 1.53·29-s − 0.201·31-s − 0.543·33-s − 2.14·35-s + 0.441·37-s + 0.250·39-s − 0.175·41-s + 1.80·43-s + 0.298·45-s − 1.55·47-s + 0.812·49-s − 0.778·51-s − 1.80·53-s − 0.960·55-s − 1.24·57-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8816721476\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8816721476\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 3 | \( 1 + 1.56T + 3T^{2} \) |
| 5 | \( 1 + 3.56T + 5T^{2} \) |
| 7 | \( 1 - 3.56T + 7T^{2} \) |
| 11 | \( 1 - 2T + 11T^{2} \) |
| 17 | \( 1 - 3.56T + 17T^{2} \) |
| 19 | \( 1 - 6T + 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 - 8.24T + 29T^{2} \) |
| 31 | \( 1 + 1.12T + 31T^{2} \) |
| 37 | \( 1 - 2.68T + 37T^{2} \) |
| 41 | \( 1 + 1.12T + 41T^{2} \) |
| 43 | \( 1 - 11.8T + 43T^{2} \) |
| 47 | \( 1 + 10.6T + 47T^{2} \) |
| 53 | \( 1 + 13.1T + 53T^{2} \) |
| 59 | \( 1 + 6T + 59T^{2} \) |
| 61 | \( 1 + 11.3T + 61T^{2} \) |
| 67 | \( 1 - 6T + 67T^{2} \) |
| 71 | \( 1 - 10.6T + 71T^{2} \) |
| 73 | \( 1 - 10T + 73T^{2} \) |
| 79 | \( 1 - 12T + 79T^{2} \) |
| 83 | \( 1 - 7.36T + 83T^{2} \) |
| 89 | \( 1 - 8.24T + 89T^{2} \) |
| 97 | \( 1 + 6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.28454330113670948655073709200, −10.81087360251388496407908079424, −9.377196874183027388350286719535, −8.058879507191647417811245649701, −7.77539753056032688611458481623, −6.52817216471150033707346671591, −5.20143174946730975313711249811, −4.55041891149894693443005352293, −3.26527197582933712538693389082, −0.982909778236499642329416676867,
0.982909778236499642329416676867, 3.26527197582933712538693389082, 4.55041891149894693443005352293, 5.20143174946730975313711249811, 6.52817216471150033707346671591, 7.77539753056032688611458481623, 8.058879507191647417811245649701, 9.377196874183027388350286719535, 10.81087360251388496407908079424, 11.28454330113670948655073709200