Properties

Label 2-4140-1.1-c1-0-8
Degree $2$
Conductor $4140$
Sign $1$
Analytic cond. $33.0580$
Root an. cond. $5.74961$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 0.334·7-s − 2.12·11-s − 2.25·13-s − 6.93·17-s + 4.12·19-s + 23-s + 25-s + 1.92·29-s + 0.440·31-s − 0.334·35-s + 6.04·37-s + 10.2·41-s − 5.50·43-s + 4.65·47-s − 6.88·49-s + 4.40·53-s − 2.12·55-s + 10.8·59-s + 13.7·61-s − 2.25·65-s + 6.87·67-s − 5.57·71-s + 6.25·73-s + 0.709·77-s + 16.7·79-s − 10.2·83-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.126·7-s − 0.639·11-s − 0.625·13-s − 1.68·17-s + 0.945·19-s + 0.208·23-s + 0.200·25-s + 0.356·29-s + 0.0791·31-s − 0.0565·35-s + 0.993·37-s + 1.60·41-s − 0.838·43-s + 0.679·47-s − 0.984·49-s + 0.604·53-s − 0.286·55-s + 1.41·59-s + 1.76·61-s − 0.279·65-s + 0.839·67-s − 0.662·71-s + 0.732·73-s + 0.0808·77-s + 1.87·79-s − 1.12·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4140\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(33.0580\)
Root analytic conductor: \(5.74961\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4140,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.736222897\)
\(L(\frac12)\) \(\approx\) \(1.736222897\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
23 \( 1 - T \)
good7 \( 1 + 0.334T + 7T^{2} \)
11 \( 1 + 2.12T + 11T^{2} \)
13 \( 1 + 2.25T + 13T^{2} \)
17 \( 1 + 6.93T + 17T^{2} \)
19 \( 1 - 4.12T + 19T^{2} \)
29 \( 1 - 1.92T + 29T^{2} \)
31 \( 1 - 0.440T + 31T^{2} \)
37 \( 1 - 6.04T + 37T^{2} \)
41 \( 1 - 10.2T + 41T^{2} \)
43 \( 1 + 5.50T + 43T^{2} \)
47 \( 1 - 4.65T + 47T^{2} \)
53 \( 1 - 4.40T + 53T^{2} \)
59 \( 1 - 10.8T + 59T^{2} \)
61 \( 1 - 13.7T + 61T^{2} \)
67 \( 1 - 6.87T + 67T^{2} \)
71 \( 1 + 5.57T + 71T^{2} \)
73 \( 1 - 6.25T + 73T^{2} \)
79 \( 1 - 16.7T + 79T^{2} \)
83 \( 1 + 10.2T + 83T^{2} \)
89 \( 1 + 1.33T + 89T^{2} \)
97 \( 1 - 18.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.444502610459773431716253406883, −7.65397636953391449947912157801, −6.93218720182651645121107895922, −6.27553197654632799128240010510, −5.36449246951885797915851095903, −4.78535092781026978522172288015, −3.87061606167528162462517371709, −2.70724901188590614156795148511, −2.18577620187739833051955038335, −0.73145949031201432934140032293, 0.73145949031201432934140032293, 2.18577620187739833051955038335, 2.70724901188590614156795148511, 3.87061606167528162462517371709, 4.78535092781026978522172288015, 5.36449246951885797915851095903, 6.27553197654632799128240010510, 6.93218720182651645121107895922, 7.65397636953391449947912157801, 8.444502610459773431716253406883

Graph of the $Z$-function along the critical line