Properties

Label 2-4140-1.1-c1-0-23
Degree $2$
Conductor $4140$
Sign $-1$
Analytic cond. $33.0580$
Root an. cond. $5.74961$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 3·7-s + 2·11-s − 2·13-s + 7·17-s − 6·19-s − 23-s + 25-s + 9·29-s + 9·31-s + 3·35-s − 7·37-s − 5·41-s − 8·47-s + 2·49-s + 11·53-s − 2·55-s − 9·59-s + 2·65-s − 3·67-s − 3·71-s − 6·73-s − 6·77-s − 8·79-s − 5·83-s − 7·85-s + 6·91-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.13·7-s + 0.603·11-s − 0.554·13-s + 1.69·17-s − 1.37·19-s − 0.208·23-s + 1/5·25-s + 1.67·29-s + 1.61·31-s + 0.507·35-s − 1.15·37-s − 0.780·41-s − 1.16·47-s + 2/7·49-s + 1.51·53-s − 0.269·55-s − 1.17·59-s + 0.248·65-s − 0.366·67-s − 0.356·71-s − 0.702·73-s − 0.683·77-s − 0.900·79-s − 0.548·83-s − 0.759·85-s + 0.628·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4140\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 23\)
Sign: $-1$
Analytic conductor: \(33.0580\)
Root analytic conductor: \(5.74961\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4140,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
23 \( 1 + T \)
good7 \( 1 + 3 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 7 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 9 T + p T^{2} \)
31 \( 1 - 9 T + p T^{2} \)
37 \( 1 + 7 T + p T^{2} \)
41 \( 1 + 5 T + p T^{2} \)
43 \( 1 + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 - 11 T + p T^{2} \)
59 \( 1 + 9 T + p T^{2} \)
61 \( 1 + p T^{2} \)
67 \( 1 + 3 T + p T^{2} \)
71 \( 1 + 3 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + 5 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.198352029776081704179962583997, −7.20665802211394294788507076701, −6.58224189435894862107686196920, −6.03471583126998769636769855173, −4.98010725817959605569098291710, −4.18959516479436501828774024575, −3.33632083290262564079618868160, −2.70081086208938402175006033537, −1.28374529154109134819146796964, 0, 1.28374529154109134819146796964, 2.70081086208938402175006033537, 3.33632083290262564079618868160, 4.18959516479436501828774024575, 4.98010725817959605569098291710, 6.03471583126998769636769855173, 6.58224189435894862107686196920, 7.20665802211394294788507076701, 8.198352029776081704179962583997

Graph of the $Z$-function along the critical line